Сарсенби А.М ., Сапарбаева Э.М.
ЮКГУ им М.Ауезова, г. Казахстан
Свойства вектор – функций оператора Шредингера с матричным потенциалом.
Дифференциальные операторы вида
,
заданные в пространстве вектор - функций, с
матричным потенциалом
были рассмотрены в
работе
, где была развита теория базисности В.А.Ильина
. При этом корневые функций оператора
были определены по
формулам
![]()
Как известно
, в случае скалярного оператора
, при таком определении присоединенных функций возникает
проблема выбора присоединенных функций. Указанная проблема выбора присоединенных
функций исчезает , если присоединенные
функции определить по формуле
![]()
Поэтому, естественно исследовать свойства собственных и
присоединенных функций оператора
при таком
определении.
Пусть
гильбертово
пространство комплекснозначных вектор – функций
состоящих из
компонентов.
Скалярное произведение элементов этого пространства определяется равенством
,
где
. Тогда норма элемента
может быть определена
равенством

Собственные и
присоединенные функции оператора
будем понимать в обобщенном смысле В.А.Ильина.
Пусть вектор – функции
абсолютно непрерывны
вместе со своими первыми производными на промежутке
и почти всюду на этом отрезке удовлятворяют матричным
уравнениям.
(1)
где
- диагональная
матрица,
- число, равное либо
нулю, либо единице, причем
=0. При
=0 вектор – функцию
называем собственной
функцией. При
=1 дополнительно требуем
и вектор функцию
называем
присоединенной функцией.
Обозначим ![]()
,
, и будем считать что число
занумерованы в
порядке возрастания их абсолютных величин.
Справедлива следующая
Теорема. Пусть каждый элемент потенциала
принадлежит классу
и
. Тогда для
собственных и присоединенных функций оператора
выполняются следующие
оценки:
![]()
.
Для любых двух
точек
,
отрезка
и для любой присоединенной функции оператора
имеет место следующая
формула среднего значения

Полагая
перепишем эту формулу
для случая знака + .
(2)
Будем
считать, что
. Так как
,
ограничены при
из (2) получаем

Все элементы
потенциала
принодлежат
. Учитывая это и
суммируя обе части последнего неравенства по всем
от 1 до
, получим

При достаточно больших значениях параметра
из полученного неравенства вытекает оценка
(3)
Два первых слагаемых в правой части (3)
оцениваются изложенным способом с помощью формулы (2) путем умножения этой
формулы соответственно на
и
и последующим интегрированием
полученного соотношения по
переменной
в пределах от 0 до
. При этом учитывается тот факт, что
,
В результате этих действий, будем
иметь:
(4)
(5)
Сопоставляя (4) и (5) получим,
(6)
(7)
Два первых слагаемых в правой части (3) оценим с помощью
соотношений (6) и (7), которые справедливы для любого
. Эти обстоятельства позволяет написать неравенство (3) в
виде
(8)
Совершенно
аналогично уставливается такая оценка для левой половины
рассматриваемого
отрезка:
(9)
Объядиняя оценки (8) и (9) получаем

Это значит
![]()
Теорема доказана.
Литература
1.Куркина А.В. О базисности Рисса корневых вектор – функций
оператора Шредингера с матричным потенциалом и матричным спектральным
параметром // Дифференц. уравнения. 1994., Т.30., №6. С. 972-986.
2.Ильин В.А., Мальков К. В., Моисеев Е.
И. // Дифференц. уравнения. 1989. Т. 25, № 12. С. 2133-2143.
3. Садыбеков М.А;
Сарсенби А.М. К теории оценок антиаприорного тила в смысле В.А. Ильина //
Доклады РАН.2008., Т.420, № 3. С. 316-319.