ПРИМЕНЕНИЕ МЕТОДА ОБРАТНОГО РАССЕЯНИЯ ДЛЯ УЛОЖЕННОГО В ТРАНШЕЕ ОПТИЧЕСКОГО КАБЕЛЯ 

 

 Джанузакова Р.Д.

 

Измерение затухания осуществляется на всех стадиях производства оптического кабеля, строительства и эксплуатации ВОЛС. Все методы измерения затухания в оптических волокнах делятся на две группы: методы светопропускания и методы обратного рассеяния. Измеряют коэффициент затухания оптического кабеля, затухание строительных длин, затухание смонтированного участка регенерации, затухание разъемных и сварных соединений ОВ.

Если кабель уложен в траншее, т.е. оба его конца разнесены, то измерение по методу двух точек усложняется, так как его должны проводить два оператора у концов кабеля. При этом необходимо, чтобы измерители мощности, разнесенные по концам кабеля, имели бы идентичные параметры. В подобных случаях более удобными являются методы, обеспечивающие измерение при одностороннем доступе.

 В основе метода обратного рассеяния лежит явление обратного рэлеевского рассеяния. При реализации этого метода измеряемое волокно зондируют оптическими импульсами, вводимыми в ОВ через оптический направленный ответвитель. Из-за флюктуаций показателя преломления сердцевины вдоль волокна, отражений от рассеянных и локальных неоднородностей, распределенных по всей длине волокна, возникает обратный поток энергии. Мощность этого потока, измеренная в точке ввода оптических зондирующих импульсов в волокно с некоторой задержкой t относительно момента посылки зондирующего импульса, пропорциональна мощности обратного потока энергии в точке кабеля, расположенной на расстоянии

 

lx  =  tv / 2

 

от места измерения, где v — групповая скорость распространения оптического импульса. Соответственно, при измерении с конца кабеля зависимости мощности обратного потока энергии от времени определяется распределением мощности обратно рассеянного оптического сигнала вдоль кабеля — характеристика обратного рассеяния волокна. По этой характеристике можно определить функцию затухания по длине с конца кабеля, фиксировать местоположение и характер неоднородностей. Как правило, регистрируют отдельные реализации характеристики обратного рассеяния, а затем их усредняют во времени и уже усредненные значения выводят на устройство отображения.

Упрощенная структурная схема измерения затухания методом обратного рассеяния приведена на рис.1.

 

Рис. 1  - Структурная схема измерения затухания ОВ методом обратного рассеяния

Зондирующие импульсы поступают от источника излучения 2 через направленный ответвитель 3 в оптическое волокно 4. Поток обратного рассеяния регистрируется в чувствительном фотоприемном устройстве 5 и преобразуется в электрический сигнал, который после специальной обработки в блоке б подается на вход устройства отображения 7. При использовании в качестве устройства отображения электронного осциллографа этот сигнал вызывает соответствующее отклонение луча по оси У на экране. Вертикальная ось экрана градуируется в децибелах по мощности (дБм). Отклонение луча по горизонтальной оси Х происходит под действием пилообразного напряжения генератора развертки осциллографа.

Вследствие  этого положение луча по оси Х изменяется в зависимости от времени запаздывания сигнала t. Зная групповое время запаздывания оптического сигнала в сердцевине ОВ, можно осуществить градуировку горизонтальной оси в единицах длины для измеряемого типа ОВ. Блок управления 1 обеспечивает согласованную работу лазера и электронного осциллографа. В результате генератор развертки, запускаемый тем же импульсом, что и леер, создает возможность наблюдения потока обратного рассеяния или полностью, или по частям. Блок управления осуществляет регистрацию и занесение в память реализации временных характеристик мощности обратного рассеяния и их усреднения.

Рефлектограмма на экране осциллографа строится по усредненной временной характеристике. Кроме того, указанный блок управляет работой рефлектометра по заданной программе, обрабатывает данные, а также выполняет ряд сервисных функций. Как правило, типичный комплект оптического рефлектометра включает базовый блок и набор сменных блоков, каждый из которых работает на определенных длинах волн (0,85 мкм; 1,3 мкм; 1,55 мкм) и имеет свои характеристики.

Рассмотрим принцип измерения коэффициента затухания ОВ по характеристикам обратного рассеяния. Согласно рис.1. на линейном монотонном участке характеристики волокна выделяют две точки, в которых измеряют уровни мощности обратного потока энергии p1 и р2. Расстояния от начала линии до этих точек l1 и l2. Коэффициент затухания определяется по формуле:

α  = 1- р2) ( l2 l1)

 

Принцип измерения собственного затухания определенной длины ОВ на участке между интересующими точками оптической линии тот же, что и для измерения коэффициента затухания. Но значение собственного затухания определяетс из выражения:

 

αl  = р1- р2

 

В режиме измерения затухания все операции, за исключением операции размещения двух маркеров, производятся автоматически и значение затухания оптической линии на участке между маркерами выводится на отображающее устройство.

Рис. 2 – Размещение маркеров при измерении коэффициента затухания ОВ методом обратного рассеяния

Изменение модового состава оптического излучения и отражения в месте соединения приводят к искажениям рефлектограммы в некоторой зоне вблизи места соединения. Протяженность этой зоны достаточно велика (100...200 м), поэтому оценки затухания стыка, полученные непосредственно как разность результатов измерения обратно рассеянной мощности до и после стыка, имеют большую погрешность, которая может достигать 100% и более.

Участки характеристики обратного рассеяния ОВ в строительных длинах до и после стыка аппроксимируются известной зависимостью, например линейной зависимостью, полиномами и т. п. Затем путем экстраполяции в первом случае вперед, а во втором случае назад, оценивают уровни мощности обратного потока энергии в ОВ в конце первой (р1) и начале второй (р2) сращиваемых строительных длин, т. е. в месте стыка. Затухание на стыке оценивают как разность:

 

ac =p1 p2

 

Как правило, рефлектометром автоматически измеряется затухание соединения ОВ.

Метод обратного рассеяния требует применения специальных дорогостоящих средств измерения оптических рефлектометров.