К.т.н.
Твердоступ Н.И.
Днепропетровский национальный университет им. Олеся Гончара
АНАЛИЗ НИЗКОЧАСТОТНОГО ГИРАТОРА НА
КОНВЕРТОРАХ ОТРИЦАТЕЛЬНОГО
СОПРОТИВЛЕНИЯ
В схеме гиратора,
выполненного на конверторах отрицательного сопротивления, устойчивое
инвертирование импеданса в общем возможно при тщательном согласовании параметров
составляющих элементов, которое сводится к обязательному соблюдению взаимного
равенства сопротивлений всех резисторов комбинированной обратной связи [1, 2].
Целью настоящей работы
является уточнение конкретных условий согласования параметров элементов
гиратора для обеспечения устойчивого инвертирования импеданса с заданным
коэффициентом преобразования.
“Классический” гиратор на конверторах
отрицательного сопротивления (рис.1) содержит два операционных усилителя DA1
и DA2 с элементами комбинированной обратной связи и
а также резистор связи
.
Рис. 1 – Гиратор на конверторах отрицательного сопротивления
Гиратор обладает свойством взаимности [1],
поэтому произвольный импеданс нагрузки можно подключать к
любой паре зажимов
или
. Рассмотрим, каким будет импеданс соответствующей пары
зажимов при подключении нагрузки к противоположной паре.
При подключении к зажимам
входные импедансы конверторов отрицательного сопротивления в
точках А и В будут соответственно равны [3]
, (1)
(2)
а входное сопротивление
со стороны зажимов
.
(3)
Выражение (3) с учетом
(1) и (2) можно представить, как
. (4)
Выражение (4) при
выполнении условия
(5)
и с учетом (2)
преобразуется к виду
. (6)
При выполнении следующего условия
(7)
выражение (6) принимает
окончательный вид уравнения гиратора, изменяющего характер импеданса нагрузки
. (8)
Действительно, если в
качестве нагрузки используется,
например, индуктивность
, то из (8) следует
= ,
отсюда
, что указывает на емкостной характер импеданса на зажимах
, обратный индуктивному характеру импеданса на зажимах
.
Таким образом,
одновременное выполнение условий (5) и (7) обеспечивает справедливость
уравнения гиратора (8).
Рассмотрим входной
импеданс гиратора на зажимах при подключении
нагрузки
к зажимам
. В этом случае входной импеданс конвертора DA2
в точке В с учетом параллельно
подключенной нагрузки
равен [3]
=
а в точке А соответственно
.
Конвертор DA1 преобразует в импеданс, который
в точке С имеет вид
.
Так как подключен параллельно
, то входная проводимость гиратора имеет вид
=
+ . (9)
Из (9) следует, что при
одновременном выполнении условий (5) и (7) входной импеданс гиратора со стороны
зажимов равен
. (10)
Выражение (10) полностью
совпадает с (8). Это подтверждает симметричность гиратора на
конверторах отрицательного сопротивления, возможность равноценного подключения
нагрузки к любой паре зажимов.
Основным фактором
эффективного инвертирования
импеданса нагрузки, является выполнение условий (5) и (7), сводящееся к
точности выбора сопротив-
лений указанных
резисторов. При нарушении этих условий в гираторе возможно возникновение
паразитных колебаний из-за самовозбуждения, ибо, как следует из (4), (6) и (9),
в составе входного импеданса при этом одновременно появляются
отрицательные активная, индуктивная и емкостная составляющие.
Физический смысл
выражений (5), (7) можно уточнить, исключив сопротивление связи. В этом случае получим соотношение
=
,
(11)
показывающее, что суть
согласования заключается в достижении равенства входных сопротивлений
конверторов. Исходя из формы записи уравнений гиратора (8) и (10) условие
согласования (11) целесообразно записать в виде
=
.
(12)
В этом случае в (8) и (10) произведение
сопротивлений является
коэффициентом
преобразования, величиной которого можно управлять всего лишь одним параметром - сопротивлением связи
, не нарушая, при этом, условие согласования
(12).
Вывод. Гиратор является согласованным при
достижении равенства входных сопротивлений конверторов отрицательного
сопротивления. Коэффициент преобразования гиратора определяется величиной
сопротивлением связи.
Литература:
1. Титце У., Шенк К.
Полупроводниковая схемотехника: в 2 т.: пер с нем. – Т.2. – М.: Додэка - ХХI,
2008. – 942 с.
2. Волович Г.И.
Схемотехника аналоговых и аналого-цифровых электронных устройств. – М.: Додэка
- ХХI, 2005. – 528 с.
3.
Твердоступ Н.И. Обобщенная модель преобразователей импеданса // Вісник Дніпропетр. ун-ту. Фізика.
Радіоелектроніка. – 2010. – Вип. 17, №2. – С. 103 - 108.