Хомченко М.Н.

Иркутский государственный технический университет

Экологические проблемы каталитического крекинга

В настоящее время во всём мире с каждым годом увеличивается количество автомобилей. Соответственно, увеличивается потребление автомобильного топлива.

Несмотря на поиски альтернативных источников энергии, достойной замены дизтопливу и автомобильному бензину пока нет.

Каталитический крекинг был открыт в 30-е годы нашего Века, когда заметили, что контакт с некоторыми природными алюмосиликатами меняет состав продуктов термического крекинга. Примерно одну треть моторного топлива в мире получают путем крекинга. А более четверти всей мировой химической продукции вырабатывают из разных видов продуктов химической переработки нефти.

Установки каталитического крекинга относятся к одним из главных загрязнителей в нефтеперерабатывающих предприятиях.

Основным источником загрязнения при каталитическом крекинге является регенератор катализатора [1].

Для блока каталитического крекинга в основном используют тяжёлые дистилляты первичной переработки нефти, а это сырье более обогащено сернистыми и азотистыми соединениями, так же имеет в своём составе тяжёлые металлы в виде металлоорганики. Так как при самом крекинге идут процессы расщепления более сложных молекул углеводородов в более простые (в основном), то процессу расщепления подвергаются так же и молекулы содержащие азот, серу и металлы, превращая их в более простые соединения.

При переработке утяжеленного сырья катализатор может отравляться этими азотистыми и металлоорганическими соединениями. Отравление металлами выражается повышением коксоотложений на катализаторе и увеличением доли водорода в газах крекинга. Оба эти явления объясняются каталитическим действием металлов на реакции дегидрирования, протекающие на поверхности катализатора. Азотистые соединения значительно снижают выход бензина. Отмечена большая стабильность цеолитов к металлоорганическим и особенно к азотистым соединениям по сравнению с аморфными алюмосиликатами.

По мере увеличения времени контакта сырья с катализатором активность катализатора падает, так как его поверхность покрывается смолисто-коксовыми отложениями. В результате на поверхности катализатора образуются все более обеднённые водородом соединения, а жидкие и газообразные продукты все более обогащаются водородом. За счет обеднения водородом адсорбированные продукты уплотнения переходят в кокс, дезактивирующий катализатор.

Отработанный катализатор стекает в регенератор. Для восстановления активности эти отложения (кокс) выжигают посредством контакта горячего катализатора с потоком воздуха.

При процессе обжига катализатора в регенераторе на нём происходит сгорание не только кокса, но и отложившихся на нём соединений серы, азота, поэтому выпускать дымовые газы сразу в атмосферу нельзя. Раньше отходящий газ из регенератора просто пропускали через внутренний циклон для отделения пылевидного катализатора, далее он поступал в дожигатель CO, потом в атмосферу, часто через электрофильтр. При такой очистке в атмосферу попадало большое количество оксидов серы и азота. Заметим, что при использовании высокотемпературной регенерации отпадает нужда в СО – дожигателе и радикально изменяется характер выбросов при каталитическом крекинге в псевдоожиженном слое. Но сложность проведения процесса высокотемпературной регенерации заключается в том, что катализатор имеет свойство спекаться при высоких температурах [2].

Следует отметить также ещё один источник выбросов дымовых газов в атмосферу – это печь, через которую первоначально проходит сырьё и где нагревается до необходимой температуры процесса. Эти технологические нагреватели работают на наиболее доступном и экономичном топливе, обычно представляющем собой смесь поставляемого естественного газа, топливного газа, получаемого на заводе, и топливной нефти. В качестве последней обычно используется остаточная топливная нефть. Обычно половина или более потребности в тепле покрывается топливным газом, производимым на заводе.

Выбросы из печей зависят от типа топлива, но типичные объёмы выбросов приведены в таблице 1.

Таблица 1 - Типичные объёмы выбросов загрязняющих веществ в атмосферу из печей [3]

Загрязнение

Объёмы выбросов при сгорании топлива

Природный газ,

мкг/м3

Топливная нефть,

кг/м3

Углеводороды (в пересчёте на CH4)

Аэрозоли

SOx (в пересчёте на SO2)

CO

NOx (в пересчёте на NO2)

48,4

81 – 243

9,7

273

193 – 209

0,205

32

1,025

12,018

 Литература:

1.       Ревура С.В. Загрязнение геологической среды нефтепродуктами. Пути решения данной проблемы на территории Архангельской области/ С.В. Ревура //Экология человека. – Б.м. - 2004.-№1.-с.30-33.

2.       Орлов Д.С.Экология и охрана биосферы при химическом загрязнении: Учеб. пособие для хим., хим.-технолог. и биол. Специальностей вузов /Д.С. Орлов, Л.К. Садовнокова, И.Н. Лозановская.-М.: Высш. Шк.,-2002.-334с.

3.       Абросимов А.А. Социально-экологические проблемы нефтепереработки.// Экология и промышленность России. – Б.м. – 2000- №11, 32 с.