ê.ô.-ì.í.
äîö. Â.È. Åâñååâ
Êàçàíñêèé (Ïðèâîëæñêèé) ôåäåðàëüíûé óíèâåðñèòåò,
Êàçàíü, Ðîññèÿ, êàôåäðà ïðèêëàäíîé
èíôîðìàòèêè
ÓÄÊ 681.32 1 - vladislaw.evseev@yandex.ru, ò.89047610772
Ìîäåëèðîâàíèå òåðíàðíîé íåãàòèâíîé êîíúþíêöèè
Àííîòàöèÿ
 ðàáîòå èññëåäóåòñÿ
òåðíàðíàÿ êîíúþíêöèÿ, ó êîòîðîé âíåøíÿÿ áèíàðíàÿ îïåðàöèÿ îêàçûâàåòñÿ
ïîäâåðãíóòîé èíâåðñèè. Äëÿ ýòîãî ñëó÷àÿ ñòðîèòñÿ òàáëè÷íîå îïèñàíèå
äèàãîíàëüíûì ìåòîäîì, ïîëó÷åííûì àâòîðîì.
This paper deals with the ternary conjunction, which external binary
operation is subjected to an inversion. In this case the table is constructed
using the diagonal description given by the author and described in his book
"foundations of semantic analysis.
Êëþ÷åâûå ñëîâà:
òåðíàðíàÿ êîíúþíêöèÿ, èíâåðñèÿ, âíóòðåííÿÿ è âíåøíÿÿ áèíàðíûå îïåðàöèè,
òåðíàðíûå òàáëèöû.
1. Ìîäåëü òåðíàðíîé íåãàòèâíîé êîíúþíêöèè.
Ýòà ìîäåëü ïîëó÷àåòñÿ ïðèìåíåíèåì èíâåðñèè ê
âíåøíåìó ýëåìåíòó ïîçèòèâíîé (èëè «÷èñòîé») òåðíàðíîé êîíúþíêöèè. Òåðíàðíûå
îïåðàöèè èçó÷àëèñü àâòîðîì â ñòð. 29 – 43. Ñåé÷àñ
íàïîìíèì òîëüêî, ÷òî ïîçèòèâíàÿ òåðíàðíàÿ êîíúþíêöèÿ íàìè îáîçíà÷àåòñÿ:
, (1)
Çíà÷èò, äëÿ íåãàòèâíîé òåðíàðíîé êîíúþíêöèè
ïîëó÷àåì:
. (2)
Òåïåðü íàõîäèì ìàòðèöó ïîçèòèâíîé êîíúþíêöèè:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Çíà÷èò,
íåãàòèâíàÿ êîíúþíêöèÿ èìååò âèä:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. Ïîñòðîåíèå òåðíàðíîé ìîäåëè íåãàòèâíîé êîíúþíêöèè
Êàê è â ñòð. 94, ïðèìåíèì
äèàãîíàëüíûé ìåòîä äëÿ ïîëíîãî àíàëèçà òåðíàðíîé íåãàòèâíîé êîíúþíêöèè. Êàæäàÿ
òàáëèöà ïðè ýòîì áóäåò ñîäåðæàòü èíôîðìàöèþ ïî îäíîé ïåðâè÷íîé äèàãîíàëè (òî
åñòü, äèàãîíàëè ïåðâîãî ñóæäåíèÿ
), ñëåäîâàòåëüíî, âñåãî ïîëó÷àåòñÿ ÷åòûðå òàáëèöû, â êîòîðûõ
áóäóò óêàçàíû âñå çíà÷åíèÿ îêîí÷àòåëüíîãî ðåçóëüòàòà.
Òàáë. 3.1
|
Y X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Çäåñü ïðèíÿòà ñëåäóþùàÿ íóìåðàöèÿ òàáëèö: ïåðâîå
÷èñëî óêàçûâàåò íîìåð òåðíàðíîé îïåðàöèè, à âòîðîå – íîìåð äèàãîíàëè (ïî
àðãóìåíòó Õ).
|
Y X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Òàáë. 3.2
Çäåñü ïîñòðîåíà ìàòðèöà çíà÷åíèé äëÿ âòîðîé
ïåðâè÷íîé äèàãîíàëè.
|
Y X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
Òàáë. 3.3.
Ýòà òàáëèöà ñîäåðæèò ýëåìåíòû íåãàòèâíîé òåðíàðíîé
êîíúþíêöèè, ñîîòâåòñòâóþùèå òðåòüåé äèàãîíàëè (ïî ïåðâîìó àðãóìåíòó).
Òàáë. 3.4.
|
Y X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|