Кицун Т.М.
Чернівецький
національний університет імені Юрія Федьковича, Україна
Дослідження впливу різних факторів на обсяг випуску
в галузі наукової діяльності за допомогою функції Кобба-Дугласа
Наукова та інноваційна діяльність в Україні розвивається на
високому рівні. Обсяг випуску наукових робіт залежить від багатьох факторів.
Одними з найголовніших є обсяг інвестицій та кількість науковців, які працюють
в цій галузі. Значення цих факторів наведені нижче в таблиці.[1]
Таблиця 1
Фактори впливу на випуск наукових робіт протягом
2010-2015 рр.
|
Період |
Капітал, K, млн.грн. |
Кількість науковців,L, тис |
Випуск наукових робіт, Y, млн.грн. |
|
2010 |
8045,5 |
89564 |
9867,1 |
|
2011 |
14333,9 |
84969 |
10349,9 |
|
2012 |
11480,6 |
82032 |
11252,7 |
|
2013 |
9562,6 |
77853 |
12781,1 |
|
2014 |
10695,9 |
69404 |
13450,7 |
|
2015 |
13813,7 |
63864 |
14511,4 |
Отже,
проаналізуємо ці дані за допомогою функції Кобба-Дугласа, яка вигладає так:
(1)
Для знаходження
невідомих коефіцієнтів, необхідно перетворити виробничу функцію, тобто про
логарифмувати обидві частини та за допомогою функції «ЛИНЕЙН» Excel, знайдемо їх.
В результаті
отримаємо значення A=
25352034676, α=-0,1, β=-1,22. Побудуємо функцію Кобба-Дугласа. Якщо
вона буде адекватна вихідним даним, то розрахований Y має
бути максимально близьким до значень початкового трудового ресурсу. Зробимо
перевірку адекватності функції Кобба-Дугласа за допомогою критерія Фішера.[2]
Перевірка адекватності полягає в
порівнянні розрахованого значення функції та табличного значення функції, яке
визначається за допомогою функції Excel
«F.ОБР». Формула розрахованої функції:
, де
m – кількість факторів, 2;
n
– період дослідження, 6;
В
результаті, розраховане F = 54,600, а F табличне =30,8165. Отже, ми можемо
зробити висновок, що побудована функція Кобба-Дугласа з достовірністю 99%
відповідає вихідним даним. Використаємо її для аналізу ефективності ресурсів.
Розрахуємо динаміку всіх показників аналізу виробничої
функції з 2010 по 2015 роки(Таблиця 2).
Таблиця
2
Динаміка показників аналізу
виробничої функції
|
Період |
Капітал K |
Працівники L |
Середня ефективність
ресурсів |
Гранична ефективність
ресурсів |
Гранична норма
заміщеності |
||
|
μK |
μL |
vK |
vL |
yKL |
|||
|
2010 |
8045,5 |
89564 |
1,2778 |
0,1147 |
-0,1175 |
-0,1398 |
1,1899 |
|
2011 |
14333,9 |
84969 |
0,7252 |
0,1223 |
-0,0666 |
-0,1490 |
2,2346 |
|
2012 |
11480,6 |
82032 |
0,9645 |
0,1349 |
-0,0887 |
-0,1644 |
1,8539 |
|
2013 |
9562,6 |
77853 |
1,2551 |
0,1541 |
-0,1154 |
-0,1878 |
1,6270 |
|
2014 |
10695,9 |
69404 |
1,2775 |
0,1968 |
-0,1174 |
-0,2398 |
2,0414 |
|
2015 |
13813,7 |
63864 |
1,0692 |
0,2312 |
-0,0983 |
-0,2817 |
2,8652 |
Як бачимо, середня ефективність ресурсу K була не постійною, а змінювалась в
часі, при чому має негативну тенденцію. Якщо в 2010-му році вона сягала 1,2778,
то вже в 2015-му зменшилась до 1,0692. Вона показує, що при використанні 1
одиниці капіталу, ми отримаємо 1,069 одиниць випуску продукції. Це називають
середньою фондовіддачею.[3]
Зрівнюючи
середню фондовіддачу та середню продуктивність праці, бачимо, що середня
віддача основного капіталу перебільшує середню продуктивність трудового
ресурсу. Однак для трудових ресурсів ми визначаємо позитивну тенденцію, тобто вона з часом
збільшується.
Наступний
показник це гранична ефективність ресурсів, яка показує на скільки зміниться
випуск Y, якщо основний капітал збільшити на 1 одиницю. В нашому
випадку, якщо капітал збільшити на одиницю, тоді обсяг випуску наукових робіт
зменшиться на -0,0983, а якщо збільшиться на одиницю кількість науковців, тоді
обсяг випуску зменшиться на -0,2817. Ці значення називаються відповідно
гранична фондовіддача та гранична продуктивність.
Дослідимо тепер
еластичність випуску продукції в залежності від використання ресурсів.
При виведенні формул, можна побачити, що для
функції Кобба-Дугласа еластичність постійна і дорівнює для K = α = -0,1, а для L = β = -1,22. Це означає, що якщо ми збільшимо
використання капіталу на одиницю, то випуск наукових робіт зменшиться на 0,1%,
а якщо збільшимо кількість науковців на 1%, то випуск зменшиться на 1,22%.
Останнім
показником є гранична норма заміщення ресурсів, яка визначається для обох
факторів. Можемо зробити висновки, що наші ресурси взаємозамінні при тому ж
самому випуску. Якщо ми зменшимо кількість науковців, то для того, щоб випуск
не змінився, необхідно буде збільшити використання капіталу на 2,86.
Зробимо прогнози
на 2016 рік. Припустимо, що плановий ріст становить 3%, а планове зниження
затрат на трудові ресурси становить 2%. Ми матимемо такі результати при
значеннях K=14089,974, L=61948,08:
-
Середня фондовіддача, μK = 1,0858;
-
Середня продуктивність, μL = 0,2469;
-
Гранична фондовіддача, vK = -0,0998;
-
Гранична продуктивність, vL = -0,3008;
-
Гранична норма заміщеності, yKL = 3,0129
Порівнявши з попередніми даними, можемо побачити, що
середня ефективність ресурсів збільшиться, а саме збільшиться середня
продуктивність. Взаємозамінність між граничними
ресурсами зберігається, тобто гранична фондовіддача більша за граничну
продуктивність. Норма заміщення також залишилась відповідною попереднім.
Отже, можемо сміливо сказати, що розроблена модель
може використовуватися для прогнозування показників обсягу випуску наукових
робіт в галузі наукової та інноваційної діяльності, використовуючи відомі дані
факторів.
Література:
1.
Статистичні
дані наукової та інноваційної діяльності [Електронний ресурс]. – 2015. – Режим
доступу до ресурсу: http://www.ukrstat.gov.ua/.
2.
Бахрушин
В. Є. Методи аналізу даних:навчальний посібник для студентів / В. Є. Бахрушин.
– Запоріжжя: Класичний приватний університет, 2011. – 268 с.
3.
Бібліотека
економіста. Виробнича функція Кобба-Дугласа [Електронний ресурс]. – 2017. –
Режим доступу до ресурсу: http://library.if.ua/book/120/8022.html.