Математика /5. Математическое моделирование

Жамбаева А.К.

Костанайский государственный университет им. А. Байтурсынова, Казахстан

 

Mathematical model

 

A mathematical model is a powerful method of understanding the external world as well as of prediction and control. Analysis of a mathematical model allows us to penetrate the essence of the phenomena under study. The process of mathematical modeling, that is, the study of a phenomenon using a mathematical model, can be divided into four stages.

The first stage consists in formulating the laws that relate the principal objects of the model. This stage requires a broad knowledge of the facts pertaining to the given phenomena and a deep understanding of the interrelations between the phenomena. The final step of this stage is the notation in mathematical terms of formulated qualitative conceptions of the relations among the objects of the model.

The second stage consists in investigating the mathematical problems that the mathematical model leads to. Here the main question involves the solution of the direct problem, that is, obtaining from an analysis of the model various output data (theoretical conclusions) for further comparison with observations of the given phenomena. At this stage, the mathematical apparatus required for analyzing the mathematical model assumes an important role as does computer technology, a powerful tool for obtaining quantitative output information through the solution of complex mathematical problems. Often, the mathematical problems that arise in connection with mathematical models for different phenomena are identical; for example, the fundamental problem of linear programming covers quite different kinds of situations. This justifies the examination of such a typical mathematical problem as an independent subject of study abstracted from the phenomena under consideration.

The third stage consists in ascertaining whether or not the given hypothetical model satisfies the criterion of  practice, that  is, determining whether the results of observations agree with the theoretical consequences of the model within the limits of observational accuracy. If the model is completely defined, that is, all its parameters are given, then a determination of the deviations of the theoretical conclusions from the observations provides a solution of the direct problem as well as an estimate of the deviations. If the deviations exceed the limits of the observational accuracy, the model cannot be adopted. The setting up of a model often leaves some of the model’s characteristics undefined.

Inverse problems are problems in which the characteristics (parametric or functional) of a model are defined such that the output information can be compared within the limits of observational accuracy with the results of observations of the phenomena under study. If these conditions cannot be satisfied for a given mathematical model, no matter how the characteristics are selected, the model is unsuitable for investigating the phenomena in question. The use of the practice criterion in evaluating a mathematical model allows us to determine whether the assumptions on which the (hypothetical) model being studied is based are correct. This method is the only way of studying phenomena of the macroworld or microworld that are not directly accessible to us.

The fourth stage consists in analyzing the model in conjunction with new data on the given phenomena and updating the model. Data on the phenomena being studied are continuously being refined in the course of the development of science and technology, and a point is reached when conclusions that can be drawn from existing mathematical models do not correspond to our knowledge of the phenomenon. Thus, it becomes necessary to set up a new and more perfect mathematical model.

The method of mathematical modeling, which reduces the study of phenomena of the external world to mathematical exercises, occupies a central place among other methods of investigation, particularly since the advent of the electronic computer. Computers make it possible to devise new technological facilities operating under optimal conditions for the solution of complex scientific and technological problems; they also make it possible to predict new phenomena. Mathematical models themselves have proved to be an important means of control. They are used in the most varied branches of knowledge and have become a necessary apparatus in economic planning; they are also an important element in automated control systems.

 

References

1. Popović, Ž., "Basic mathematical models  in economic-ecological control", Economics and Organization Vol. 5, No 3, University of Niš, Serbia. -2008, pp. 251 - 262

2. Gorelov, A., "Ecology - Science - Modeling", Nauka Press, Moscow, 1985.