Химия и химические технологии / 2. Теоретическая химия

A. S. Gotsulya, O. I. Panasenko, Ye. G. Knysh, T. S. Brytanova

Zaporozhye State Medical University

THE STUDY OF PHYSICAL AND CHEMICAL PROPERTIES OF                 7-((3-THIO-4-R-1,2,4-TRIAZOLE-3-YL)METHYL)THEOPHYLLINE

Key words: 1,2,4-triazole, theophylline, UV-spectrophotometry, light absorption, intensity of absorption spectra.

It is well known that it`s necessary to examine the structure of derived substances and to establish a dependence between their structure and some physical and chemical constants to justify a detailed study of activity of the synthesized compounds in order to identify the direction of pharmacological action [1,3,4]. To the present, scientific publications cited data on research UV spectra of compounds, derivative 1,2,4-triazole, but their detailed study was carried out [3,4].

The aim was to study the UV spectra of aza-heterocyclic compounds, comprising 1,2,4-triazole and theophylline sintons in solvents of different polarity (water, 95% ethanol, 0.1 M and 1 M solutions of sodium hydroxide, 0.1 M and 1 M solutions of hydrochloric acid, 0.1 M and 1 M solutions of sulfuric acid, chloroform, propan-2-ol, acetonitrile and 1,4-dioxane) to establish the relationship between the chemical structure of the compounds and the nature of their electronic spectra.

The reason for choosing these solvents was determined with the following factors:

a) the ability to determine the presence of electrons transitions of bands shift, in solvents of different polarity (chloroform, propan-2-ol, acetonitrile, acetone, 1,4-dioxane in comparison with water and ethanol);

b) partial use of some solvents (chloroform, 95% ethanol, etc.) for the extraction substances out of biological objects and dosage forms);

c) necessity of a choice of solvents that form solutions of the highest optical density to use in future development of quality control methods;

d) the possibility of the formation of salts in solutions of hydrochloric acid and sodium hydroxide or oxonium salt in concentrated solutions of sulfuric acid and identify hydrolytic processes in alkaline or acidic medium;

e) calculation of dissociation constants if necessary;

f) the study of the effects of solute-solvent interaction to obtain the most complete information about the nature of the investigated electronic transition.

Materials and methods. All our used solvents and reagents were qualified «chemically pure». It was used spectrophotometer SPECORD 200-222U214 (Analytic Jena, Germany) for studying the UV spectra of the analyzed compounds and measuring the intensity. Measuring the absorption of solutions of these substances was performed in quartz cuvettes with a layer thickness of 10 mm. In the connection with the fact that we have synthesized substances that exhibit selective light absorption in the UV part of the spectrum, UV spectra were investigated at concentration of 1 mg%. Electronic spectra were studied in the range of 200 to 400 nm, the spectra schedule was built in the coordinates A=f (x).

Results and discussion. Electronic spectra in these solvents were measured to study the nature of the UV spectra of 7-((3-thio-4-phenyl-4H-1,2,4-triazole-5-yl) methyl)theophylline (I) 7-((3-thio-4-ethyl-4N-1,2,4-triazole-5-yl)methyl)theophyl-line (II) and 7-((3-thio-4-methyl-4H-1,2,4-triazole-5-yl)methyl)theophylline (III).

Table 1

Researched substance

Concentration of the solvent

λ, nm

A

E

lg E

Transitions of electrons

1

2

3

4

5

6

7

8

1

І

Water

206

258

1,2

0,620

44280

22880

4,65

4,36

π→π*

π→π*

ІІ

Water

206

252

1,083

0,705

34760

22630

4,54

4,36

π→π*

π→π*

ІІІ

Water

206

250

1,208

0,757

37090

23240

4,57

4,37

π→π*

π→π*

2

І

95% ethanol

202

206

267

1,530

1,420

0,624

56500

52400

23030

4,75

4,72

4,36

π→π*

π→π*

π→π*

ІІ

95% ethanol

 

203

258

1,371

0,604

44010

19390

4,65

4,28

π→π*

π→π*

ІІІ

95% ethanol

206

256

1,225

0,852

37610

26160

4,58

4,42

π→π*

π→π*

Continuation of table1

1

2

3

4

5

6

7

8

3

І

0,1М NaOH

218

255

1,124

0,400

41480

15000

4,62

4,20

π→π*

π→π*

ІІ

0,1М NaOH

216

252

0,902

0,450

28350

14400

4,46

4,16

π→π*

π→π*

ІІІ

0,1М NaOH

205

256

1,212

0,775

37210

23800

4,57

4,38

π→π*

π→π*

4

І

0,1М  NaOH

222

253

1,542

0,250

56240

9230

4,75

3,96

π→π*

π→π*

ІІ

0,1М NaOH

225

252

1,399

0,320

44910

10270

4,63

4,01

π→π*

π→π*

ІІІ

0,1М NaOH

224

256

1,280

0,420

39760

12890

4,39

4,11

π→π*

π→π*

5

І

0,1М HCl

206

257

1,354

0,651

49960

24022

4,69

4,38

π→π*

π→π*

ІІ

0,1М HCl

206

252

1,094

0,696

35120

22340

4,55

4,35

π→π*

π→π*

ІІІ

0,1М HCl

206

250

0,855

0,499

26750

15320

4,42

4,19

π→π*

π→π*

6

І

0,1М HCl

206

257

1,326

0,024

43930

23030

4,69

4,36

π→π*

π→π*

ІІ

0,1М HCl

206

252

0,719

0,335

23080

10750

4,36

4,03

π→π*

π→π*

ІІІ

0,1М HCl

208

251

1,047

0,761

32140

23360

4,51

4,37

π→π*

π→π*

7

І

0,1М H2SO4

206

258

1,320

0,611

48710

22550

4,64

4,35

π→π*

π→π*

ІІ

0,1М H2SO4

205

252

0,841

0,456

26990

15000

4,43

4,17

π→π*

π→π*

ІІІ

0,1М H2SO4

206

251

1,186

0,751

36410

23055

4,56

4,36

π→π*

π→π*

8

І

1М H2SO4

204

263

1,240

0,478

45760

17640

4,66

4,25

π→π*

π→π*

ІІ

1М H2SO4

206

250

1,462

0,899

46930

28900

4,67

4,46

π→π*

π→π*

ІІІ

1М H2SO4

206

251

1,288

0,873

39540

26800

4,60

4,43

π→π*

π→π*

9

І

Chloroform

270

0,733

27050

4,43

π→π*

ІІ

Chloroform

510

532

0,04

0,03

12840

9210

4,11

3,97

π→π*

π→π*

ІІІ

Chloroform

262

0,878

29630

4,47

π→π*

10

І

Propane-2-ol

208

268

1,444

0,794

53280

29300

4,73

4,46

π→π*

π→π*

ІІ

Propane-2-ol

207

259

0,938

0,739

30110

23720

4,48

4,38

π→π*

π→π*

ІІІ

Propane-2-ol

207

257

1,314

1,024

40340

31440

4,04

4,49

π→π*

π→π*

Continuation of table1

1

2

3

4

5

6

7

8

11

І

Acetonitrile

235

270

0,579

0,576

21360

21250

4,33

4,33

π→π*

π→π*

ІІ

Acetonitrile

234

270

0,694

0,62`0

22280

19900

4,35

4,30

π→π*

π→π*

ІІІ

Acetonitrile

235

272

0,720

0,668

22100

20510

4,34

4,31

π→π*

π→π*

12

І

1,4-dioxane

279

0,339

12510

4,09

π→π*

ІІ

1,4-dioxane

279

0,155

4980

3,70

π→π*

ІІІ

1,4-dioxane

272

0,599

18400

4,27

π→π*

 

These data in table 1 show that the UV spectra of the compounds in water, 95% ethanol; 0.1 M and 1 M solutions of NaOH, HCl, H2SO4,propan-2-ol and acetonitrile are characterized with two absorption bands. The first band exhibits maxima at 203-235 nm, and the second - in the range of 250-272 nm. Electronic band of all three compounds we have studied in chloroform and 1,4-dioxane has only one band with a maxima in the range of 262-279 nm. This is due to the fact that the omission capacity of chloroform and 1,4-dioxane starts from 276 nm (chloroform) and from 277 nm (1,4-dioxane).

Each of the three studied molecules is consisted of two fragments. The first - purine and the second – 1,2,4-triazole cycle. Significant opportunity of resonance manifest for purine molecules which formally contain four double bonds. The spectra of neutral purine solutions are characterized with two broad intense bands: at <220 nm (E> 3000) and at 263 nm (E> 8000). The shortwave band of purine corresponds to π → π* 1La transition type of electrons, and the band at 263 nm corresponds to the permitted 1Lb.transition type of electrons.

This purine band at 260 nm is complex, and the transition of electrons, which corresponds to it, is caused with longitudinal polarization of purine series [8].

Purine radical is connected to 1,2,4-triazole cycle with methylene group. As you know UV spectrum of 1,2,4-triazoles in aqueous solution is characterized with one band at 187 nm [8]. It is due to the fact that it has not homocyclic conjugation. Therefore, a characteristic feature of the absorption spectra of 1,2,4-triazole is the absence of bands, which are caused with the transition from lone electron heteroatoms orbitals on π-orbital cycle. In this case, the lone electron heteroatoms orbital has pronounced s-character in comparison with similar orbital six-membered cycles due to lower valence angles in the first [5].

As methylene fragment separates purine cycle from 1,2,4- triazole, in this case p-π-conjugation cannot be between them. There are only two bands on the total electronic spectrum of the compounds, because maximum of the UV absorption band is in near UV (187 nm) (Table 1).

Conclusions

1. UV spectra of 7-((3-thio-4-methyl-1,2,4-triazole-5-yl) methyl)theophylline, 7-((3-thio-4-ethyl-1,2,4-triazole-5-yl)methyl)theophylline and 7-((3-thio-4-phenyl-1,2,4-triazole-5-yl)methyl)theophylline have studied in neutral, acidic and alkaline solvents.

2. It is established that the electronic spectra of the compounds are characterized with maxima in the short waved (203-235 nm) and median waved (250-272 nm) parts of UV spectrum.

3. Absorption maxima of the analyzed compounds are caused with permitted   π → π * electrons transitions according to 1La and 1Lb due to the presence of methylene fragment in the molecules of analyzed compounds which separates purine cycle from 1,2,4-triazole.

Litherature

1.   Георгиевский В. П. Аналитическая химия в создании, стандартизации и контроле качества лекарственных средств. Монография в 3-х томах.– Харьков: «НТМТ», 2011, 1 – 464 с., т. 2 – 474 с., т. 3 – 570 с.

2.   Гоцуля А. С., Міколасюк О. О., Панасенко О. І. та ін. Синтез і дослідження фізико-хімічних властивостей солей 2-(5-((теофілін-7-іл)метил)-4-феніл-4Н-1,2,4-тріазлол-3-ілітіо)ацетатної кислоти // Запорож. мед. журн. – 2014. – №1(82). – С. 91–94.

3.   Парченко В. В., Буряк В. П., Панасенко О. І. та ін. Ультрафіолетові спектри вбирання похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону. Спектральна характеристика та вивчення тіон-тіольної таутомерії 4-алкіл- та арилпохідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону // Запорож. мед. журн. – 2008. – №6. – С. 91–95.

4.   Буряк В. П., Парченко В. В., Панасенко О. І. та ін. Ультрафіолетові спектри поглинання похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону. Основні оптичні характеристики електронних смуг поглинання 4-алкіл- та арил- похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону // Вісник фармації. – 2009. – №2 (58). – С. 8–11.

5.   Штерн Э., Тиммонс К. Электронная абсорбционная спектроскопия в органической химии – М.: Мир, 1994. – 295 с.

6.   Kier L.B. Molecular orbitale in chemical pharmacology. – N.Y., 2001. – 314 p.