Химия и химические технологии / 2. Теоретическая химия
A. S. Gotsulya, O. I. Panasenko,
Ye. G. Knysh, T. S. Brytanova
Zaporozhye State Medical University
THE STUDY OF PHYSICAL AND CHEMICAL PROPERTIES OF
7-((3-THIO-4-R-1,2,4-TRIAZOLE-3-YL)METHYL)THEOPHYLLINE
Key words: 1,2,4-triazole,
theophylline, UV-spectrophotometry, light absorption, intensity of absorption
spectra.
It is
well known that it`s necessary to examine the structure of derived substances and to establish a
dependence between their structure and some physical and chemical constants to justify a detailed study of activity of the
synthesized compounds in order to identify the direction of
pharmacological action [1,3,4]. To the present, scientific publications cited
data on research UV spectra of compounds, derivative 1,2,4-triazole, but their
detailed study was carried out [3,4].
The aim
was to study the UV spectra of aza-heterocyclic compounds, comprising
1,2,4-triazole and theophylline sintons in
solvents of different polarity (water, 95% ethanol, 0.1 M and 1 M solutions of sodium hydroxide, 0.1 M
and 1 M solutions of hydrochloric acid, 0.1 M and 1 M solutions of sulfuric
acid, chloroform, propan-2-ol, acetonitrile and 1,4-dioxane) to establish the relationship between the chemical
structure of the compounds and the nature of
their electronic spectra.
The
reason for choosing these solvents was determined with
the following factors:
a) the
ability to determine the presence of electrons transitions of bands shift, in solvents of different polarity (chloroform,
propan-2-ol, acetonitrile, acetone, 1,4-dioxane in comparison with water and
ethanol);
b)
partial use of some solvents (chloroform, 95% ethanol, etc.) for the extraction substances out
of biological objects and dosage forms);
c) necessity
of a choice of solvents that form solutions of the
highest optical density to use in future development of quality control methods;
d) the
possibility of the formation of salts in solutions of hydrochloric acid and
sodium hydroxide or oxonium salt in concentrated solutions of sulfuric acid and
identify hydrolytic processes in alkaline or acidic medium;
e) calculation of dissociation constants if necessary;
f) the
study of the effects of solute-solvent interaction to
obtain the most complete information about the nature of the
investigated electronic transition.
Materials and methods. All our used
solvents and reagents were qualified «chemically pure». It was used
spectrophotometer SPECORD 200-222U214 (Analytic Jena, Germany) for studying the UV spectra
of the analyzed compounds and measuring the intensity. Measuring the absorption
of solutions of these substances was performed in quartz cuvettes with a layer
thickness of 10 mm. In the connection with the
fact that we have synthesized substances that exhibit selective light
absorption in the UV part of the spectrum, UV spectra were investigated at
concentration of 1 mg%. Electronic spectra were studied in the range of 200 to
400 nm, the spectra schedule was built in the
coordinates A=f (x).
Results and
discussion. Electronic spectra in these solvents were measured to study the nature
of the UV spectra of 7-((3-thio-4-phenyl-4H-1,2,4-triazole-5-yl) methyl)theophylline
(I) 7-((3-thio-4-ethyl-4N-1,2,4-triazole-5-yl)methyl)theophyl-line (II) and 7-((3-thio-4-methyl-4H-1,2,4-triazole-5-yl)methyl)theophylline
(III).
Table 1
|
№ |
Researched
substance |
Concentration of
the solvent |
λ, nm |
A |
E |
lg E |
Transitions of
electrons |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
1 |
І |
Water |
206 258 |
1,2 0,620 |
44280 22880 |
4,65 4,36 |
π→π* π→π* |
|
ІІ |
Water |
206 252 |
1,083 0,705 |
34760 22630 |
4,54 4,36 |
π→π* π→π* |
|
|
ІІІ |
Water |
206 250 |
1,208 0,757 |
37090 23240 |
4,57 4,37 |
π→π* π→π* |
|
|
2 |
І |
95% ethanol |
202 206 267 |
1,530 1,420 0,624 |
56500 52400 23030 |
4,75 4,72 4,36 |
π→π* π→π* π→π* |
|
ІІ |
95% ethanol |
203 258 |
1,371 0,604 |
44010 19390 |
4,65 4,28 |
π→π* π→π* |
|
|
ІІІ |
95% ethanol |
206 256 |
1,225 0,852 |
37610 26160 |
4,58 4,42 |
π→π* π→π* |
Continuation of table1
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
3 |
І |
0,1М NaOH |
218 255 |
1,124 0,400 |
41480 15000 |
4,62 4,20 |
π→π* π→π* |
|
ІІ |
0,1М NaOH |
216 252 |
0,902 0,450 |
28350 14400 |
4,46 4,16 |
π→π* π→π* |
|
|
ІІІ |
0,1М NaOH |
205 256 |
1,212 0,775 |
37210 23800 |
4,57 4,38 |
π→π* π→π* |
|
|
4 |
І |
0,1М NaOH |
222 253 |
1,542 0,250 |
56240 9230 |
4,75 3,96 |
π→π* π→π* |
|
ІІ |
0,1М NaOH |
225 252 |
1,399 0,320 |
44910 10270 |
4,63 4,01 |
π→π* π→π* |
|
|
ІІІ |
0,1М NaOH |
224 256 |
1,280 0,420 |
39760 12890 |
4,39 4,11 |
π→π* π→π* |
|
|
5 |
І |
0,1М HCl |
206 257 |
1,354 0,651 |
49960 24022 |
4,69 4,38 |
π→π* π→π* |
|
ІІ |
0,1М HCl |
206 252 |
1,094 0,696 |
35120 22340 |
4,55 4,35 |
π→π* π→π* |
|
|
ІІІ |
0,1М HCl |
206 250 |
0,855 0,499 |
26750 15320 |
4,42 4,19 |
π→π* π→π* |
|
|
6 |
І |
0,1М HCl |
206 257 |
1,326 0,024 |
43930 23030 |
4,69 4,36 |
π→π* π→π* |
|
ІІ |
0,1М HCl |
206 252 |
0,719 0,335 |
23080 10750 |
4,36 4,03 |
π→π* π→π* |
|
|
ІІІ |
0,1М HCl |
208 251 |
1,047 0,761 |
32140 23360 |
4,51 4,37 |
π→π* π→π* |
|
|
7 |
І |
0,1М H2SO4 |
206 258 |
1,320 0,611 |
48710 22550 |
4,64 4,35 |
π→π* π→π* |
|
ІІ |
0,1М H2SO4 |
205 252 |
0,841 0,456 |
26990 15000 |
4,43 4,17 |
π→π* π→π* |
|
|
ІІІ |
0,1М H2SO4 |
206 251 |
1,186 0,751 |
36410 23055 |
4,56 4,36 |
π→π* π→π* |
|
|
8 |
І |
1М H2SO4 |
204 263 |
1,240 0,478 |
45760 17640 |
4,66 4,25 |
π→π* π→π* |
|
ІІ |
1М H2SO4 |
206 250 |
1,462 0,899 |
46930 28900 |
4,67 4,46 |
π→π* π→π* |
|
|
ІІІ |
1М H2SO4 |
206 251 |
1,288 0,873 |
39540 26800 |
4,60 4,43 |
π→π* π→π* |
|
|
9 |
І |
Chloroform |
270 |
0,733 |
27050 |
4,43 |
π→π* |
|
ІІ |
Chloroform |
510 532 |
0,04 0,03 |
12840 9210 |
4,11 3,97 |
π→π* π→π* |
|
|
ІІІ |
Chloroform |
262 |
0,878 |
29630 |
4,47 |
π→π* |
|
|
10 |
І |
Propane-2-ol |
208 268 |
1,444 0,794 |
53280 29300 |
4,73 4,46 |
π→π* π→π* |
|
ІІ |
Propane-2-ol |
207 259 |
0,938 0,739 |
30110 23720 |
4,48 4,38 |
π→π* π→π* |
|
|
ІІІ |
Propane-2-ol |
207 257 |
1,314 1,024 |
40340 31440 |
4,04 4,49 |
π→π* π→π* |
Continuation of table1
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
11 |
І |
Acetonitrile |
235 270 |
0,579 0,576 |
21360 21250 |
4,33 4,33 |
π→π* π→π* |
|
ІІ |
Acetonitrile |
234 270 |
0,694 0,62`0 |
22280 19900 |
4,35 4,30 |
π→π* π→π* |
|
|
ІІІ |
Acetonitrile |
235 272 |
0,720 0,668 |
22100 20510 |
4,34 4,31 |
π→π* π→π* |
|
|
12 |
І |
1,4-dioxane |
279 |
0,339 |
12510 |
4,09 |
π→π* |
|
ІІ |
1,4-dioxane |
279 |
0,155 |
4980 |
3,70 |
π→π* |
|
|
ІІІ |
1,4-dioxane |
272 |
0,599 |
18400 |
4,27 |
π→π* |
These
data in table 1 show that the UV spectra of the compounds in water, 95%
ethanol; 0.1 M and 1 M solutions of NaOH, HCl, H2SO4,propan-2-ol
and acetonitrile are characterized with two absorption bands. The first band exhibits
maxima at 203-235 nm, and the second - in the range of 250-272 nm. Electronic
band of all three compounds we have studied in chloroform and 1,4-dioxane has
only one band with a maxima in the range of 262-279 nm. This is due to the fact
that the omission capacity of chloroform and 1,4-dioxane starts from 276 nm
(chloroform) and from 277 nm (1,4-dioxane).
Each of
the three studied molecules is consisted of two fragments. The first - purine and
the second – 1,2,4-triazole cycle. Significant opportunity of resonance
manifest for purine molecules which formally contain four double bonds. The
spectra of neutral purine solutions are characterized with two broad intense
bands: at <220 nm (E> 3000) and at 263 nm (E> 8000). The shortwave
band of purine corresponds to π → π* 1La
transition type of electrons, and the band at 263 nm corresponds to the
permitted 1Lb.transition type of electrons.
This
purine band at 260 nm is complex, and the transition of electrons, which corresponds
to it, is caused with longitudinal polarization of purine series [8].
Purine
radical is connected to 1,2,4-triazole cycle with methylene group. As you know
UV spectrum of 1,2,4-triazoles in aqueous solution is characterized with one
band at 187 nm [8]. It is due to the fact that it has not homocyclic conjugation. Therefore, a characteristic feature of
the absorption spectra of 1,2,4-triazole is the absence of bands, which are
caused with the transition from lone electron heteroatoms orbitals on
π-orbital cycle. In this case, the lone electron heteroatoms orbital has
pronounced s-character in comparison with similar orbital six-membered cycles
due to lower valence angles in the first [5].
As
methylene fragment separates purine cycle from 1,2,4- triazole,
in this case p-π-conjugation cannot be between
them. There are only two bands on the total electronic spectrum of the
compounds, because maximum of the UV absorption
band is in near UV (187 nm) (Table 1).
Conclusions
1. UV
spectra of 7-((3-thio-4-methyl-1,2,4-triazole-5-yl) methyl)theophylline, 7-((3-thio-4-ethyl-1,2,4-triazole-5-yl)methyl)theophylline
and 7-((3-thio-4-phenyl-1,2,4-triazole-5-yl)methyl)theophylline have studied in
neutral, acidic and alkaline solvents.
2. It
is established that the electronic spectra of the compounds are characterized with
maxima in the short waved (203-235 nm) and median waved (250-272 nm) parts of UV spectrum.
3. Absorption maxima of
the analyzed compounds are caused with permitted π → π * electrons transitions
according to 1La and 1Lb due to the
presence of methylene fragment in the molecules of analyzed compounds which
separates purine cycle from 1,2,4-triazole.
Litherature
1. Георгиевский
В. П. Аналитическая химия в создании,
стандартизации и контроле качества лекарственных средств. Монография в 3-х томах.– Харьков: «НТМТ», 2011, 1 –
464 с., т. 2 – 474 с., т. 3 – 570 с.
2. Гоцуля А. С., Міколасюк О. О., Панасенко О. І. та ін. Синтез і дослідження
фізико-хімічних властивостей солей 2-(5-((теофілін-7-іл)метил)-4-феніл-4Н-1,2,4-тріазлол-3-ілітіо)ацетатної
кислоти // Запорож. мед. журн. – 2014. – №1(82). – С. 91–94.
3. Парченко В. В., Буряк В. П., Панасенко О. І. та ін. Ультрафіолетові спектри
вбирання похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону. Спектральна характеристика та вивчення
тіон-тіольної таутомерії 4-алкіл- та арилпохідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону // Запорож. мед. журн. – 2008. –
№6. – С. 91–95.
4. Буряк В. П., Парченко В. В., Панасенко О. І. та ін. Ультрафіолетові спектри
поглинання похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону. Основні оптичні характеристики електронних смуг
поглинання 4-алкіл- та арил- похідних 5-(фуран-2-іл)-4-R-1,2,4-тріазол-3-тіону // Вісник фармації. – 2009. – №2 (58). – С. 8–11.
5. Штерн Э., Тиммонс К. Электронная абсорбционная спектроскопия в органической
химии – М.: Мир, 1994. – 295 с.
6. Kier L.B. Molecular orbitale in chemical pharmacology. – N.Y., 2001. – 314 p.