Импульсная  рефлектометрия как метод  
для определения повреждений кабельных линий

 Точному определению места повреждения в линиях связи и электропередачи, которое производится трассовыми методами, должна предшествовать предварительная его локализация методом импульсной рефлектометрии.
         Все повреждения по характеру делятся на устойчивые и неустойчивые, простые и сложные.
         К устойчивым повреждениям относятся короткие замыкания (КЗ), низкоомные утечки и обрывы.
К неустойчивым повреждениям относятся утечки и продольные сопротивления с большими величинами сопротивлений, «заплывающие пробои» в силовых кабельных линиях, увлажнения места нарушения изоляции и другие.                

Устойчивость повреждения может быть определена посредством измерения сопротивления изоляции и прозвонки поврежденного кабеля при отсутствии или наличии дестабилизирующих факторов. Это первая операция является обязательной для определения места повреждения как силовой кабельной линии.
         Дистанционные и трассовые методы определения повреждений в кабельных линиях
Важная роль из всех операций принадлежит операции «Обнаружение зоны нахождения места повреждения» дистанционными методами.
         Успешное решение операции дистанционного определения расстояния до зоны нахождения места повреждения измерением с одного конца кабеля позволяет значительно сократить трудоемкость и время точного определения места повреждения, так как зона обследования кабельной линии трассовыми методами существенно сужается. Это наиболее актуально для протяженных кабельных линий.
         Импульсные методы измерения базируются на теории распространении импульсных сигналов вдоль линий.
Импульсные методы позволяют: измерить расстояние (электрическую длину линии) до места повреждения или неоднородности (муфты, кабельной вставки), определить вид повреждения (короткое замыкание, обрыв, утечки, перепутывание жил, и т.д.)
Импульсные сигналы распространяются в линии с очень большой скоростью, которая зависит от изоляции между проводниками. Так, например, в воздушных линиях, где изолятор – воздух, скорость распространения импульсных сигналов близка к скорости света. В кабелях с резиновой изоляцией скорость распространения импульсных сигналов ориентировочно в 3 раза меньше, чем скорость света.
          Использование метода импульсной рефлектометрии для определения повреждений кабельных линий

Метод импульсной рефлектометрии позволяет определить зону повреждения (в пределах погрешности измерения) и применить отдельные трассовые методы обнаружения только на небольших участках трассы, что позволяет существенно сократить время точного определения места дефекта.
         Сущность метода импульсной рефлектометрии
Метод импульсной рефлектометрии, называемый также методом отраженных импульсов или локационным методом, базируется на распространении импульсных сигналов в двух и многопроводных системах (линиях и кабелях) связи.
Сущность метода импульсной рефлектометрии заключается в выполнении следующих операций:
1. Зондировании кабеля (двухпроводной линии) импульсами напряжения.
2. Приеме импульсов, отраженных от места повреждения и неоднородностей волнового сопротивления.
3. Выделении отражений от места повреждений на фоне помех (случайных и отражений от неоднородностей линий).
4. Определении расстояния до повреждения по временной задержке отраженного импульса относительно зондирующего.
http://ref.rushkolnik.ru/docs/36/35301/35301_html_48292d75.png

Рис 3.2.1 Упрощенная структурная схема импульсного рефлектометра
С генератора импульсов зондирующие импульсы подаются в линию.
Отраженные импульсы поступают с линии в приемник, в котором производятся необходимые преобразования над ними. С выхода приемника преобразованные сигналы поступают на графический индикатор.
Все блоки импульсного рефлектометра функционируют по сигналам блока управления.
На графическом индикаторе рефлектометра воспроизводится рефлектограмма линии – реакция линии на зондирующий импульс.
         Образование рефлектограммы линии легко проследить по диаграмме, приведенной на рисунке ниже. Здесь осью ординат является ось расстояния, а осью абсцисс – ось времени.
http://ref.rushkolnik.ru/docs/36/35301/35301_html_364dda17.png

Рис 2.2 Рефлектограмма
В левой части рисунка показана кабельная линия с муфтой и коротким замыканием, а в нижней части – рефлектограмма этой кабельной линии.
Анализируя рефлектограмму линии, оператор получает информацию о наличии или отсутствии в ней повреждений и неоднородностей.
Если выходное сопротивление рефлектометра не согласовано с волновым сопротивлением линии, то в моменты времени 2∙tм, 4∙tм и т.д. будут наблюдаться переотраженные сигналы от муфты, убывающие по амплитуде, а в моменты времени 2∙tх, 4∙tх и т.д. – переотражения от места короткого замыкания.
Основную сложность и трудоемкость при методе отраженных импульсов представляет выделение отражения от места повреждения на фоне помех.
Метод импульсной рефлектометрии базируется на физическом свойстве бесконечно длинной однородной линии, согласно которому отношение между напряжением и током введенной в линию электромагнитной волны одинаково в любой точке линии. Это соотношение:
W = U/I (2.1)
имеет размерность сопротивления и называется волновым сопротивлением линии.
http://ref.rushkolnik.ru/docs/36/35301/35301_html_77e29e3d.png http://ref.rushkolnik.ru/docs/36/35301/35301_html_m42d3cba6.png

Рис 2.6 Отражение импульса от различных мест повреждения
В идеальном случае, когда отражение от повреждения полное и затухание отсутствует, амплитуда отраженного сигнала равна амплитуде зондирующего импульса.
Рассмотрим два случая эквивалентных схем повреждений, которые наиболее часто встречаются на практике: шунтирующая утечка и продольное сопротивление.

Пусть место повреждения линии представляет собой шунтирующую утечку Rш:
http://ref.rushkolnik.ru/docs/36/35301/35301_html_755cc525.png

Рис 2.7 Схема повреждения с продольной утечкой
С изменением сопротивления утечки от нуля (соответствует короткому замыканию) до бесконечности (соответствует исправной линии), при положительном зондирующем импульсе отраженный импульс имеет отрицательную полярность и изменяется по амплитуде от максимального значения до нулевого, в соответствии с выражением:
Котр= (W1 – W) / (W1 + W) = – W / (W+2∙Rш), (2.4)
где: Rш – сопротивление шунтирующей утечки,
W1 – волновое сопротивление линии в месте повреждения, определяется выражением:
W1 = (W∙R ш) / (W + Rш) (2.5)
Так, например, при коротком замыкании (Rш = 0) получаем: Котр = -1. В этом случае сигнал отражается полностью с изменением полярности.
При отсутствии шунтирующей нагрузки (Rш = бесконечности) имеем:
Котр = 0. Сигнал не отражается вообще.
При изменении Rш от 0 до бесконечности амплитуда отраженного сигнала уменьшается от максимального значения до нулевого, сохраняя отрицательную полярность (см. рисунок).
http://ref.rushkolnik.ru/docs/36/35301/35301_html_m4c7a98e6.png

Рис 3.2.8 Зависимость отражённого импульса от сопротивления Rш
Если эквивалентная схема места повреждения линии имеет вид включения продольного сопротивления (например, нарушение спайки или скрутки жилы), то с изменением величины продольного сопротивления отраженный импульс изменяется по амплитуде, оставаясь той же полярности что и зондирующий импульс.
http://ref.rushkolnik.ru/docs/36/35301/35301_html_m483646ed.png

Рис 2.8 Схема повреждения с продольным сопротивлением
Выражение для коэффициента отражения при наличии включения продольного сопротивления будет иметь вид:
Котр= (W1 – W) / (W1 + W) = 1 / (1+2*W/Rп), (2.6)
где: Rп – продольное сопротивление,
W1 – волновое сопротивление линии в месте включения продольного повреждения, определяемое выражением:
W1 = Rп + W (2.7)
В случае обрыва жилы (Rп = бесконечности) получаем коэффициент отражения: Котр = 1. Это означает, что сигнал отражается полностью без изменения полярности.
При нулевом значении продольного сопротивления (Rп= 0) имеем: Котр = 0. Сигнал не отражается вообще.
При изменении Rп от бесконечности до 0 отраженный сигнал уменьшается по амплитуде от максимального значения до нулевого, без изменения полярности (см. рисунок).
http://ref.rushkolnik.ru/docs/36/35301/35301_html_7b74e70e.png

Рис 2.9 Зависимость отражённого импульса от сопротивления Rп

Метод импульсной рефлектометрии удобен для практического использования, так как для измерения импульсным рефлектометром достаточно доступа к линии с одного конца.
Импульсные рефлектометры позволяют определить расстояние до места повреждения линии при любом характере повреждения (обрыв, короткое замыкание, утечка, продольное сопротивление и т.д.).
Результаты, достигаемые при измерениях импульсным рефлектометром, зависят от его возможностей по отстройке от помех.
Метод импульсной рефлектометрии позволяет достигнуть более высокой точности измерений расстояния до места повреждения по сравнению с другими методами (например, по сравнению с мостовым): 1% – для аналоговых импульсных рефлекторов и 0,2% – для цифровых.

Литература:

 1. [http://www.reis205.narod.ru/metod.htm]

 2. Груба Г.И., Иоффе А.А. «Силовые трансформаторы. Кабельные линии» Симферополь 2007 г., 192 с.

 3. Зевеке И. А.  «Теоретические основы электротехники»

 4. Листвин А.В., Листвин В.Н. «Рефлектометрия оптических волокон»

 5. Бакланов И.Г. Методы измерений в системах связи. – М.: Изд-во «ЭКО-Трендз”,1999,

195 с.

6. [http://www.ersted.ru/stati/tablitsa-koeffitsientov-ukorocheniya]