P.h.D. Kryuchin O.V.

Tambov State University named after G.R. Derzhavin

Numerical experiments for artificial neural network parallel training efficiency analysis

 

We know that artificial neural networks (ANN) are used in different science branches. But its usage needs long time expense because neural network models have the large structure and many parameters. The possible solution is the parallel algorithms and computer clusters usage. It described in papers [1-4]. The aim of this work is to develop numerical experiments for check of efficiency of these algorithms.

As we know the main task of neural network training is to minimize the target function

                                       (1)

where  is the input pattern row,  is the output pattern row,  is the ANN output value calculation function,  is the weight coefficients vector,  is the activation functions vector,  is pattern row number and  is the ANN output neurons number [1].

If serial the training algorithm elapses  hours then ideal parallel algorithm time expense is  calculated by formula

,                                                               (2)

where  is the processors number. But it is impossible because the synergetic effect is able in particular occurrences only. So real time expense of the parallel training is calculated by formula

.                                                      (3)

Here  is the time expense for prepare and sending data. So the efficiency coefficient may be calculated by formula

,                                                             (4)

where ,  are time expense of serial and parallel algorithms and  is the processors number.

For check of parallel algorithms efficiency several experiments were done. All experiments were done on computer cluster of Tambov State University, on computer cluster of Tambov State Technical University and on computer cluster of Moscow Calculation Center. ANN models were built by serial and parallel algorithms (with using 4, 6 and 8 processors) and coefficient of efficiency was calculated.

The first experiment is forecasting the mass of caught shrimp. This experiment uses a multilayer perceptron. Pic. 1 shows the obtained ANN structure and pic. 2 shows the empirical and predicted values of shrimp mass. The efficiency coefficient values can be found in table 1.

Pic. 1. ANN structure in forecasting of caught shrimp mass.

Pic. 2. Practical (x) and forecast (y) values of caught shrimp mass.

 

Tab. 1. Efficiency coefficients for forecasting the caught shrimp mass.

 

Cluster TSU

Cluster TSTU

Cluster MCC

(4 proc)

0.9235

0.9199

0.9297

(6 proc)

0.9221

0.9157

0.9291

(8 proc)

0.9204

0.9105

0.9283

(4 proc)

0.8921

0.8822

0.9091

 (6 proc)

0.8906

0.8793

0.9079

 (8 proc)

0.8891

0.8769

0.9067

 

The second experiment is forecasting the air temperature in Tambov (Russia). The values are shown in pic. 4, the structure is shown in pic. 3, and efficiency coefficients are shown in table 2 [2].

Pic. 3. ANN structure in forecasting of the air temperature.

Pic. 4. Empirical (x) and forecast (y) values of the air temperature.

 

Tab. 2. Efficiency coefficients for the air temperature.

 

Cluster TSU

Cluster TSTU

Cluster MCC

(4 proc)

0.9312

0.9287

0.9401

(6 proc)

0.9304

0.9273

0.9393

(8 proc)

0.9297

0.9259

0.9387

(4 proc)

0.9124

0.8974

0.9199

 (6 proc)

0.9112

0.8951

0.9182

 (8 proc)

0.9103

0.8936

0.9169

 

The third experiment is the forecasting of exchange rates between Euro and US dollar. This experiment uses a multilayer perceptron (MLP) and a Volterry network [3]. Values are shown in pic. 5, the MLP-structure is shown in pic. 6, and coefficients of efficiency are shown in table 3.

Pic. 5. ANN structure in forecasting of exchange rates.

Pic. 6. Empirical exchange rates (x), exchange rates forecast by multilayer perceptron (y(M)) and by Volterry (y(V)).

 

Tab. 3. Efficiency coefficients for the air temperature.

 

Cluster TSU

Cluster TSTU

Cluster MCC

(4 proc)

0.9319

0.9281

0.9438

(6 proc)

0.9302

0.9271

0.9392

(8 proc)

0.9293

0.9261

0.9389

(4 proc)

0.9127

0.8975

0.9202

 (6 proc)

0.9111

0.8949

0.9181

 (8 proc)

0.9101

0.8932

0.9165

 

The last experiment is social object simulation. Social object here is the dependence of schoolboys' professional ability on their personal characteristics [4]. Efficiency coefficients are shown in table 4.

 

Tab. 4. Coefficient of efficiency values for the experiment of social object simulation.

 

Cluster TSU

Cluster TSTU

Cluster MCC

(4 proc)

0.9212

0.9103

0.9396

(6 proc)

0.9212

0.9103

0.9391

(8 proc)

0.9211

0.9098

0.9373

(4 proc)

0.9129

0.8977

0.9205

 (6 proc)

0.9114

0.8951

0.9188

 (8 proc)

0.9103

0.8935

0.9169

 

So the numerical experiments for check the efficiency of artificial neural network training algorithms were done.

 

References

1.                 Kryuchin O.V., Arzamastsev A.A., Troitzsch K.G. A universal simulator based on artificial neural networks for computer clusters [Ýëåêòðîííûé ðåñóðñ] — Ýëåêòðîí. äàí. // Arbeitsberichte aus dem Fachbereich Informatik Nr. 2/2011. Koblenz. 2011. 13 p. — http://www.uni-koblenz.de/~fb4reports/2011/2011_02_Arbeitsberichte.pdf

2.                 Êðþ÷èí Î.Â., Êîçàäàåâ À.Ñ., Ñëåòêîâ Ä.Â., Àðçàìàñöåâ À.À. Òåñòèðîâàíèå ïàðàëëåëüíûõ àëãîðèòìîâ îáó÷åíèÿ èñêóññòâåííûõ íåéðîííûõ ñåòåé íà ïðèìåðå ïðîãíîçèðîâàíèÿ òåìïåðàòóðû âîçäóõà â ãîðîäå Òàìáîâå // Âåñòí. Òàìá. óí-òà. Ñåð. Åñòåñòâ. è òåõí. íàóêè. 2011. – Ò. 16, Âûï. 2 – Ñ. 461-467..

3.                 Oleg V. Kryuchin, Alexander A. Arzamastev, Prof. Dr. Klaus G. Troitzsch, Natalia A. Zenkova (2011): Simulating social objects with an artificial neural network using a computer cluster, Arbeitsberichte aus dem Fachbereich Informatik, 15/2011, Universität Koblenz-Landau, ISSN (Online) 1864-0850. http://www.uni-koblenz.de/~fb4reports/2011/2011_15_Arbeitsberichte.pdf.

4.                 Kryuchin O.V., Arzamastsev A.A., Troitzsch K.G. The prediction of currency exchange rates using artificial neural networks [Ýëåêòðîííûé ðåñóðñ] — Ýëåêòðîí. äàí. // Arbeitsberichte aus dem Fachbereich Informatik Nr. 4/2011. Koblenz. 2011. 12 p. — http://www.uni-koblenz.de/%7Efb4reports/2011/2011_04_Arbeitsberichte.pdf