#Êàáóë Î.Ê. Theories of continuity and infinitesimals: Four philosophers of the nineteenth century

 

 

KABUL ORALBAY KURMANBAYULY

KAZAKHISTAN

 

Theories of continuity and infinitesimals: Four philosophers of the nineteenth century

Òåîðèè ïðååìñòâåííîñòè è èíôèíèòåçèìàëåé: ×åòûðå ôèëîñîôîâ äåâÿòíàäöàòîãî âåêà

Ñàáàқòàñòûқ òåîðèÿñû ìåí èíôèíèòåçèìàëèÿ: Îí òîғûçûíøû ғàñûðäûң òөðò ôèëîñîôû

 

Annotation 

The concept of continuity recurs in many different philosophical contexts. Aristotle and Kant believed it to be an essential feature of space and time. Medieval scholars believed it to be the key to unlock the mysteries of motion and change. Bertrand Russell believed that, while everyone talked about continuity, no one quite knew what it was they were talking about.

The subject of this article is mathematical continuity in particular. By mathematical continuity, I mean continuity as it applies to or is found in mathematical systems such as sets of numbers. Mathematical continuity is a relatively recent concern. The need to address whether numerical systems are continuous came about with the creation of calculus, specifically, of limit theory.

The article focuses on four mathematicians/philosophers from the late nineteenth and early twentieth centuries who were concerned with mathematical continuity. Richard Dedekind and Georg Cantor, in the 1870s and 1880s, developed the concept of a 'point-continuum;' i.e. a continuum composed of discrete entities, such as a collection of numbers arranged on a straight line. Paul du Bois-Reymond, in 1882, and Charles S. Peirce, especially in his post-1906 essays, criticized this compositional point-continuum. Du Bois-Reymond believed infinitesimals were necessary for continuity; Peirce believed no compositional continuum could ever satisfy our intuitions.

My ultimate conclusions are that (1) the concept of the mathematical point-continuum does suffer from philosophical difficulties, (2) the concept of the infinitesimal is neither as philosophically problematic nor as mathematically useless as is often charged, but that (3) infinitesimals by themselves cannot solve the problems raised by a compositional view of continuity.

 

Àííîòàöèÿ

Ïîíÿòèå íåïðåðûâíîñòè ïîâòîðÿåòñÿ â ðàçëè÷íûõ ôèëîñîôñêèõ êîíòåêñòàõ. Àðèñòîòåëü è Êàíò ñ÷èòàëè åå âàæíîé îñîáåííîñòüþ ïðîñòðàíñòâà è âðåìåíè. Ñðåäíåâåêîâûå ó÷åíûå ñ÷èòàëè, ÷òî ýòî êëþ÷, ÷òîáû îòïåðåòü òàéíû äâèæåíèÿ è èçìåíåíèÿ. Áåðòðàí Ðàññåë ñ÷èòàåò, ÷òî, õîòÿ âñå ãîâîðèëè î ïðååìñòâåííîñòè, íèêòî òî÷íî íå çíàë, ÷òî èìåííî îíè ãîâîðèëè.

Ïðåäìåòîì äàííîé ñòàòüè ÿâëÿåòñÿ ìàòåìàòè÷åñêîå ïðååìñòâåííîñòü â ÷àñòíîñòè. Ïî ìàòåìàòè÷åñêîé íåïðåðûâíîñòè, ÿ èìåþ â âèäó ïðååìñòâåííîñòü, êàê îíà êàñàåòñÿ èëè íàõîäèòñÿ â ìàòåìàòè÷åñêèå ñèñòåìû, òàêèå êàê íàáîðû ÷èñåë. Íóæíî ðàçîáðàòüñÿ, äåéñòâèòåëüíî ëè ÷èñëîâûå ñèñòåìû íåïðåðûâíîãî ïîÿâèëàñü ñ ñîçäàíèÿ ìàòåìàòè÷åñêîãî àíàëèçà, â ÷àñòíîñòè, òåîðèè îãðàíè÷åíèé.

Ñòàòüÿ ôîêóñèðóåòñÿ íà ÷åòûðåõ ìàòåìàòèêîâ/ôèëîñîôîâ êîíöà äåâÿòíàäöàòîãî è íà÷àëà äâàäöàòîãî âåêîâ, êîòîðûå áûëè ñâÿçàíû ñ ìàòåìàòè÷åñêîé íåïðåðûâíîñòè. Ðè÷àðä Äåäåêèíä è Ãåîðã Êàíòîð â 1870-õ è 1880-õ ãã. ðàçðàáîòàíà êîíöåïöèÿ 'òî÷êà-êîíòèíóóì;' ò. å. êîíòèíóóì ñîñòîèò èç äèñêðåòíûõ åäèíèö, òàêèõ êàê íàáîð ÷èñåë, ðàñïîëîæåííûõ íà ïðÿìîé ëèíèè. Ïîëü Äþáóà-Ðåéìîí, â 1882 ãîäó, è ×àðëüç Ñ. Ïèðñ, îñîáåííî â ñâîåì ïîñòå-1906 ýññå, êðèòèêóåò ýòó êîìïîçèöèþ òî÷êè-êîíòèíóóìà. Äþáóà-Ðåéìîí ñ÷èòàë áåñêîíå÷íî ìàëûå íåîáõîäèìû äëÿ íåïðåðûâíîñòè; Ïèðñ ñ÷èòàë, íèêàêîé êîìïîçèöèîííîé êîíòèíóóì ìîãëè óäîâëåòâîðèòü íàøè èíòóèöèè.

Ìîè îêîí÷àòåëüíûå âûâîäû, ÷òî (1) Ïîíÿòèå ìàòåìàòè÷åñêîé òî÷êè-êîíòèíèóìà, íå ñòðàäàåò ôèëîñîôñêèå òðóäíîñòè, (2) Ïîíÿòèå áåñêîíå÷íî ìàëîé íè êàê ôèëîñîôñêè ïðîáëåìàòè÷íûì íè êàê ìàòåìàòè÷åñêè áåñïîëåçíî, êàê ýòî ÷àñòî âçèìàåòñÿ, íî ÷òî (3) áåñêîíå÷íî ìàëûå ñàìè ïî ñåáå íå ìîãóò ðåøèòü ïðîáëåìû, ïîäíÿòûå êîìïîçèöèîííûé çðåíèÿ ïðååìñòâåííîñòè.

 

Àңäàòïà

Ñàáàқòàñòûқ òүñ³í³ã³ òүðë³ ôèëîñîôèÿëûқ êîíòåêñòåðäå үçä³êñ³ç қàéòàëàíàäû. Àðèñòîòåëü ìåí Êàíòòûң îíû êåң³ñò³ê æәíå óàқûòòûң ìàңûçäû åðåêøåë³ã³ äåï ñàíàäû. Îðòàғàñûðëûқ ғàëûìäàð áұë қîçғàëûñ ïåí өçãåð³ñò³ң құïèÿ құëïûí àøàòûí ê³ëò äåï ïàéûìäàäû. Ðàññåë Áåðòðàííûң îéûíøà áàðëûғû ñàáàқòàñòûқ òóðàëû àéòқàíûìåí, åøê³ì өç³í³ң íå æàéûíäà ñөéëåãåíäåð³í á³ëìåéä³.

Îñû ìàқàëàíûң ìәí³  ìàòåìàòèêàëûқ ñàáàқòàñòûқ áîëûï òàáûëàäû. Ìàòåìàòèêàëûқ үçä³êñ³çä³ê äåï ìàòåìàòèêàëûқ ñàáàқòàñòûқ àéòàìûí, îғàí ìàòåìàòèêàëûқ æүéåëåðìåí ñàíäàð æèûíòûғû ñèÿқòû òүñ³í³êòåð æàòàäû. Ñàíäûқ æүéå үçä³êñ³çä³ã³ øûí ìәí³íäå ìàòåìàòèêàëûқ òàëäàó, àòàï àéòқàíäà, øåêòåó òåîðèÿñûíûң құðûëóûìåí ïàéäà áîëäûìà ñîíû қàðàñòûðó êåðåê.

Ìàқàëà  îí òîғûçûíøû ғàñûðäûң ñîңû ìåí æèûðìàñûíøû ғàñûðäûң áàñûíäàғû ìàòåìàòèêàëûқ үçä³êñ³çä³êïåí áàéëàíûñòû òөðò ìàòåìàòèê/ôèëîñîôòàðäûң åңáåêòåð³ìåí òұéûқòàëàäû. Ðè÷àðä Äåäåêèíä æәíå Ãåîðã Êàíòîð 1870-1880 ææ. 'êîíòèíóóì-íүêòåñ³' òұæûðûìäàìàñûí әç³ðëåãåí, êîíòèíóóì ñàíäàð æèûíòûғû ñåê³ëä³ ñûçûқòûқ æүéåäå îðíàëàñқàí äèñêðåòò³ á³ðë³ê. Ïîëü Äþáóà-Ðåéìîí, 1882 æûëû, ×àðëüç Ñ. Ïèðñ, әñ³ðåñå өç³í³ң ïîñò-1906 ýññåñ³íäå ñûí îñû êîíòèíóóì íүêòåñ³ êîìïîçèöèÿñûí ñûíғà àëäû. Äþáóà-Ðåéìîí øåêñ³ç øàғûíäûқ үçä³êñ³çä³ê үø³í қàæåòò³; Ïèðñ åøқàíäàé äà êîìïîçèöèÿëûқ êîíòèíóóì á³çä³ң òүéñ³ã³ì³çä³ қàíàғàòòàíäûðà àëìàғàí áîëàð åä³ äåï ñàíàäû. 

Ìåí³ң ñîңғû қîðûòûíäûëàðûì, áұë (1) Ìàòåìàòèêàëûқ êîíòèíóóì-íүêòåñ³ ұғûìû ôèëîñîôèÿëûқ қèûíäûқòàðäàí çàðäàï øåêïåéä³, (2) Øåêñ³ç ê³ø³ë³ê òүñ³í³ã³ äå ôèëîñîôèÿëûқ ïðîáëåìàëû, ìàòåìàòèêàëûқ ïàéäàñûç äåï æè³ ëûíғàíûìåí, á³ðàқ áұë (3) øåêñ³ç ê³ø³ë³ê êөòåð³ëãåí êîìïîçèöèÿëûқ ñàáàқòàñòûқ ìәñåëåëåð³ өçä³ã³íåí øåøå àëìàéäû.

Íà÷àëî ôîðìû

Êîíåö ôîðìû

Íà÷àëî ôîðìû

Êîíåö ôîðìû

 

 

The usual meaning of the word continuous is “unbroken” or “uninterrupted”: thus a continuous entity—a continuum—has no “gaps.” We commonly suppose that space and time are continuous, and certain philosophers have maintained that all natural processes occur continuously: witness, for example, Leibniz's famous apothegm natura non facitsaltus—“nature makes no jump.” In mathematics the word is used in the same general sense, but has had to be furnished with increasingly precise definitions. So, for instance, in the later 18th century continuity of a function was taken to mean that infinitesimal changes in the value of the argument induced infinitesimal changes in the value of the function. With the abandonment of infinitesimals in the 19th century this definition came to be replaced by one employing the more precise concept of limit.

Traditionally, an infinitesimal quantity is one which, while not necessarily coinciding with zero, is in some sense smaller than any finite quantity. For engineers, an infinitesimal is a quantity so small that its square and all higher powers can be neglected. In the theory of limits the term “infinitesimal” is sometimes applied to any sequence whose limit is zero. An infinitesimal magnitude may be regarded as what remains after a continuum has been subjected to an exhaustive analysis, in other words, as a continuum “viewed in the small.” It is in this sense that continuous curves have sometimes been held to be “composed” of infinitesimal straight lines.

Infinitesimals have a long and colourful history. They make an early appearance in the mathematics of the Greek atomist philosopher Democritus (c. 450 B.C.E.), only to be banished by the mathematician Eudoxus (c. 350 B.C.E.) in what was to become official “Euclidean” mathematics. Taking the somewhat obscure form of “indivisibles,” they reappear in the mathematics of the late middle ages and later played an important role in the development of the calculus. Their doubtful logical status led in the nineteenth century to their abandonment and replacement by the limit concept. In recent years, however, the concept of infinitesimal has been refounded on a rigorous basis.

We are all familiar with the idea of continuity. To be continuous[1] is to constitute an unbroken or uninterrupted whole, like the ocean or the sky. A continuous entity—a continuum—has no “gaps”. Opposed to continuity is discreteness: to be discrete[2] is to be separated, like the scattered pebbles on a beach or the leaves on a tree. Continuity connotes unity; discreteness, plurality.

While it is the fundamental nature of a continuum to be undivided, it is nevertheless generally (although not invariably) held that any continuum admits of repeated or successive division without limit. This means that the process of dividing it into ever smaller parts will never terminate in anindivisible or an atom—that is, a part which, lacking proper parts itself, cannot be further divided. In a word, continua are divisible without limit or infinitely divisible. The unity of a continuum thus conceals a potentially infinite plurality. In antiquity this claim met with the objection that, were one to carry out completely—if only in imagination—the process of dividing an extended magnitude, such as a continuous line, then the magnitude would be reduced to a multitude of atoms—in this case, extensionless points—or even, possibly, to nothing at all. But then, it was held, no matter how many such points there may be—even if infinitely many—they cannot be “reassembled” to form the original magnitude, for surely a sum of extensionless elements still lacks extension[3]. Moreover, if indeed (as seems unavoidable) infinitely many points remain after the division, then, following Zeno, the magnitude may be taken to be a (finite) motion, leading to the seemingly absurd conclusion that infinitely many points can be “touched” in a finite time.

Such difficulties attended the birth, in the 5th century B.C.E., of the school of atomism. The founders of this school, Leucippus and Democritus, claimed that matter, and, more generally, extension, is not infinitely divisible. Not only would the successive division of matter ultimately terminate in atoms, that is, in discrete particles incapable of being further divided, but matter had in actuality to be conceived as being compounded from such atoms. In attacking infinite divisibility the atomists were at the same time mounting a claim that the continuous is ultimately reducible to the discrete, whether it be at the physical, theoretical, or perceptual level.

The eventual triumph of the atomic theory in physics and chemistry in the 19th century paved the way for the idea of “atomism”, as applying to matter, at least, to become widely familiar: it might well be said, to adapt Sir William Harcourt's famous observation in respect of the socialists of his day, “We are all atomists now.” Nevertheless, only a minority of philosophers of the past espoused atomism at a metaphysical level, a fact which may explain why the analogous doctrine upholding continuity lacks a familiar name: that which is unconsciously acknowledged requires no name. Peirce coined the term synechism (from Greek syneche, “continuous”) for his own philosophy—a philosophy permeated by the idea of continuity in its sense of “being connected”[4]. In this article I shall appropriate Peirce's term and use it in a sense shorn of its Peircean overtones, simply as a contrary to atomism. I shall also use the term “divisionism” for the more specific doctrine that continua are infinitely divisible.

Closely associated with the concept of a continuum is that of infinitesimal.[5] An infinitesimal magnitude has been somewhat hazily conceived as a continuum “viewed in the small,” an “ultimate part” of a continuum. In something like the same sense as a discrete entity is made up of its individual units, its “indivisibles”, so, it was maintained, a continuum is “composed” of infinitesimal magnitudes, its ultimate parts. (It is in this sense, for example, that mathematicians of the 17th century held that continuous curves are “composed” of infinitesimal straight lines.) Now the “coherence” of a continuum entails that each of its (connected) parts is also a continuum, and, accordingly, divisible. Since points are indivisible, it follows that no point can be part of a continuum. Infinitesimal magnitudes, as parts of continua, cannot, of necessity, be points: they are, in a word, nonpunctiform.

Magnitudes are normally taken as being extensive quantities, like mass or volume, which are defined over extended regions of space. By contrast, infinitesimal magnitudes have been construed as intensive magnitudes resembling locally defined intensive quantities such as temperature or density. The effect of “distributing” or “integrating” an intensive quantity over such an intensive magnitude is to convert the former into an infinitesimal extensive quantity: thus temperature is transformed into infinitesimal heat and density into infinitesimal mass. When the continuum is the trace of a motion, the associated infinitesimal/intensive magnitudes have been identified as potential magnitudes—entities which, while not possessing true magnitude themselves, possess a tendency to generate magnitude through motion, so manifesting “becoming” as opposed to “being”.

An infinitesimal number is one which, while not coinciding with zero, is in some sense smaller than any finite number. This sense has often been taken to be the failure to satisfy the Principle of Archimedes, which amounts to saying that an infinitesimal number is one that, no matter how many times it is added to itself, the result remains less than any finite number. In the engineer's practical treatment of the differential calculus, an infinitesimal is a number so small that its square and all higher powers can be neglected. In the theory of limits the term “infinitesimal” is sometimes applied to any sequence whose limit is zero.

The concept of an indivisible is closely allied to, but to be distinguished from, that of an infinitesimal. An indivisible is, by definition, something that cannot be divided, which is usually understood to mean that it has no proper parts. Now a partless, or indivisible entity does not necessarily have to be infinitesimal: souls, individual consciousness’s, and Leibnizian monads all supposedly lack parts but are surely not infinitesimal. But these have in common the feature of being unextended; extended entities such as lines, surfaces, and volumes prove a much richer source of “indivisibles”. Indeed, if the process of dividing such entities were to terminate, as the atomists maintained, it would necessarily issue in indivisibles of a qualitatively different nature. In the case of a straight line, such indivisibles would, plausibly, be points; in the case of a circle, straight lines; and in the case of a cylinder divided by sections parallel to its base, circles. In each case the indivisible in question is infinitesimal in the sense of possessing one fewer dimension than the figure from which it is generated. In the 16th and 17th centuries indivisibles in this sense were used in the calculation of areas and volumes of curvilinear figures, a surface or volume being thought of as a collection, or sum, of linear, or planar indivisibles respectively.

The concept of infinitesimal was beset by controversy from its beginnings. The idea makes an early appearance in the mathematics of the Greek atomist philosopher Democritus c. 450 B.C.E., only to be banished c. 350 B.C.E. by Eudoxus in what was to become official “Euclidean” mathematics. We have noted their reappearance as indivisibles in the sixteenth and seventeenth centuries: in this form they were systematically employed by Kepler, Galileo's student Cavalieri, the Bernoulli clan, and a number of other mathematicians. In the guise of the beguilingly named “linelets” and “timelets”, infinitesimals played an essential role in Barrow's “method for finding tangents by calculation”, which appears in his LectionesGeometricae of 1670. As “evanescent quantities” infinitesimals were instrumental (although later abandoned) in Newton's development of the calculus, and, as “inassignable quantities”, in Leibniz's. The Marquis de l'Hôpital, who in 1696 published the first treatise on the differential calculus (entitled Analyse des InfinimentsPetits pour l'Intelligence des LignesCourbes), invokes the concept in postulating that “a curved line may be regarded as being made up of infinitely small straight line segments,” and that “one can take as equal two quantities differing by an infinitely small quantity.”

However useful it may have been in practice, the concept of infinitesimal could scarcely withstand logical scrutiny. Derided by Berkeley in the 18th century as “ghosts of departed quantities”, in the 19th century execrated by Cantor as “cholera-bacilli” infecting mathematics, and in the 20th roundly condemned by Bertrand Russell as “unnecessary, erroneous, and self-contradictory”, these useful, but logically dubious entities were believed to have been finally supplanted in the foundations of analysis by the limit concept which took rigorous and final form in the latter half of the 19th century. By the beginning of the 20th century, the concept of infinitesimal had become, in analysis at least, a virtual “unconcept”.

Nevertheless the proscription of infinitesimals did not succeed in extirpating them; they were, rather, driven further underground. Physicists and engineers, for example, never abandoned their use as a heuristic device for the derivation of correct results in the application of the calculus to physical problems. Differential geometers of the stature of Lie and Cartan relied on their use in the formulation of concepts which would later be put on a “rigorous” footing. And, in a technical sense, they lived on in the algebraists' investigations of nonarchimedean fields.

A new phase in the long contest between the continuous and the discrete has opened in the past few decades with the refounding of the concept of infinitesimal on a solid basis. This has been achieved in two essentially different ways, the one providing a rigorous formulation of the idea of infinitesimal number, the other of infinitesimal magnitude.

First, in the nineteen sixties Abraham Robinson, using methods of mathematical logic, creatednonstandard analysis, an extension of mathematical analysis embracing both “infinitely large” and infinitesimal numbers in which the usual laws of the arithmetic of real numbers continue to hold, an idea which, in essence, goes back to Leibniz. Here by an infinitely large number is meant one which exceeds every positive integer; the reciprocal of any one of these is infinitesimal in the sense that, while being nonzero, it is smaller than every positive fraction 1/n. Much of the usefulness of nonstandard analysis stems from the fact that within it every statement of ordinary analysis involving limits has a succinct and highly intuitive translation into the language of infinitesimals.

The second development in the refounding of the concept of infinitesimal took place in the nineteen seventies with the emergence of synthetic differential geometry, also known as smooth infinitesimal analysis. Based on the ideas of the American mathematician F. W. Lawvere, and employing the methods of category theory, smooth infinitesimal analysis provides an image of the world in which the continuous is an autonomous notion, not explicable in terms of the discrete. It provides a rigorous framework for mathematical analysis in which every function between spaces is smooth (i.e., differentiable arbitrarily many times, and so in particular continuous) and in which the use of limits in defining the basic notions of the calculus is replaced by nilpotent infinitesimals, that is, of quantities so small (but not actually zero) that some power—most usefully, the square—vanishes. Smooth infinitesimal analysis embodies a concept of intensive magnitude in the form of infinitesimal tangent vectors to curves. A tangent vector to a curve at a point p on it is a short straight line segment l passing through the point and pointing along the curve. In fact we may take actually to be an infinitesimal part of the curve. Curves in smooth infinitesimal analysis are “locally straight” and accordingly may be conceived as being “composed of” infinitesimal straight lines in de l'Hôpital's sense, or as being “generated” by an infinitesimal tangent vector.

The development of nonstandard and smooth infinitesimal analysis has breathed new life into the concept of infinitesimal, and—especially in connection with smooth infinitesimal analysis—supplied novel insights into the nature of the continuum.

The opposition between Continuity and Discreteness played a significant role in ancient Greek philosophy. This probably derived from the still more fundamental question concerning the One and the Many, an antithesis lying at the heart of early Greek thought (see Stokes [1971]). The Greek debate over the continuous and the discrete seems to have been ignited by the efforts of Eleatic philosophers such as Parmenides (c. 515 B.C.E.), and Zeno (c. 460 B.C.E.) to establish their doctrine of absolute monism[6]. They were concerned to show that the divisibility of Being into parts leads to contradiction, so forcing the conclusion that the apparently diverse world is a static, changeless unity.[7] In his Way of Truth Parmenides asserts that Being is homogeneous and continuous. However in asserting the continuity of Being Parmenides is likely no more than underscoring its essential unity. Parmenides seems to be claiming that Being is more than merely continuous—that it is, in fact, a single whole, indeed an indivisible whole. The single Parmenidean existent is a continuum without parts, at once a continuum and an atom. If Parmenides was a synechist, his absolute monism precluded his being at the same time a divisionism.

In support of Parmenides' doctrine of changelessness Zeno formulated his famous paradoxes of motion. (see entry on Zeno's paradoxes) The Dichotomy and Achilles paradoxes both rest explicitly on the limitless divisibility of space and time.

The doctrine of Atomism,[8] which seems to have arisen as an attempt at escaping the Eleatic dilemma, was first and foremost a physical theory. It was mounted by Leucippus (fl. 440 B.C.E.) and Democritus (b. 460–457 B.C.E.) who maintained that matter was not divisible without limit, but composed of indivisible, solid, homogeneous, spatially extended corpuscles, all below the level of visibility.

Atomism was challenged by Aristotle (384–322 B.C.E.), who was the first to undertake the systematic analysis of continuity and discreteness. A thoroughgoing synechist, he maintained that physical reality is a continuous plenum, and that the structure of a continuum, common to space, time and motion, is not reducible to anything else. His answer to the Eleatic problem was that continuous magnitudes are potentially divisible to infinity, in the sense that they may be divided anywhere, though they cannot be divided everywhere at the same time.

Aristotle identifies continuity and discreteness as attributes applying to the category of Quantity[9]. As examples of continuous quantities, or continua, he offers lines, planes, solids (i.e., solid bodies), extensions, movement, time and space; among discrete quantities he includes number[10] and speech[11]. He also lays down definitions of a number of terms, including continuity. In effect, Aristotle defines continuity as a relation between entities rather than as an attribute appertaining to a single entity; that is to say, he does not provide an explicit definition of the concept of continuum. He observes that a single continuous whole can be brought into existence by “gluing together” two things which have been brought into contact, which suggests that the continuity of a whole should derive from the way its parts “join up”. Accordingly for Aristotle quantities such as lines and planes, space and time are continuous by virtue of the fact that their constituent parts “join together at some common boundary”. By contrast no constituent parts of a discrete quantity can possess a common boundary.

One of the central theses Aristotle is at pains to defend is the irreducibility of the continuum to discreteness—that a continuum cannot be “composed” of indivisibles or atoms, parts which cannot themselves be further divided.

Aristotle sometimes recognizes infinite divisibility—the property of being divisible into parts which can themselves be further divided, the process never terminating in an indivisible—as a consequence of continuity as he characterizes the notion. But on occasion he takes the property of infinite divisibility as defining continuity. It is this definition of continuity that figures in Aristotle's demonstration of what has come to be known as the isomorphism thesis, which asserts that either magnitude, time and motion are all continuous, or they are all discrete.

The question of whether magnitude is perpetually divisible into smaller units, or divisible only down to some atomic magnitude leads to the dilemma of divisibility (see Miller [1982]), a difficulty that Aristotle necessarily had to face in connection with his analysis of the continuum. In the dilemma's first, or nihilistic horn, it is argued that, were magnitude everywhere divisible, the process of carrying out this division completely would reduce a magnitude to extensionless points, or perhaps even to nothingness. The second, or atomistic, horn starts from the assumption that magnitude is not everywhere divisible and leads to the equally unpalatable conclusion (for Aristotle, at least) that indivisible magnitudes must exist.

As a thoroughgoing materialist, Epicurus[12] (341–271 B.C.E.) could not accept the notion of potentiality on which Aristotle's theory of continuity rested, and so was propelled towards atomism in both its conceptual and physical senses. Like Leucippus and Democritus, Epicurus felt it necessary to postulate the existence of physical atoms, but to avoid Aristotle's strictures he proposed that these should not be themselves conceptually indivisible, but should contain conceptually indivisible parts. Aristotle had shown that a continuous magnitude could not be composed of points, that is, indivisible units lacking extension, but he had not shown that an indivisible unit must necessarily lack extension. Epicurus met Aristotle's argument that a continuum could not be composed of such indivisibles by taking indivisibles to be partless units of magnitude possessing extension.

In opposition to the atomists, the Stoic philosophers Zeno of Cition (fl. 250 B.C.E.) and Chrysippus (280–206 B.C.E.) upheld the Aristotelian position that space, time, matter and motion are all continuous (see Sambursky [1963], [1971]; White [1992]). And, like Aristotle, they explicitly rejected any possible existence of void within the cosmos. The cosmos is pervaded by a continuous invisible substance which they called pneuma (Greek: “breath”). This pneuma—which was regarded as a kind of synthesis of air and fire, two of the four basic elements, the others being earth and water—was conceived as being an elastic medium through which impulses are transmitted by wave motion. All physical occurrences were viewed as being linked through tensile forces in the pneuma, and matter itself was held to derive its qualities form the “binding” properties of the pneuma it contains.

The scholastic philosophers of Medieval Europe, in thrall to the massive authority of Aristotle, mostly subscribed in one form or another to the thesis, argued with great effectiveness by the Master in Book VI of the Physics, that continua cannot be composed of indivisibles. On the other hand, the avowed infinitude of the Deity of scholastic theology, which ran counter to Aristotle's thesis that the infinite existed only in a potential sense, emboldened certain of the Schoolmen to speculate that the actual infinite might be found even outside the Godhead, for instance in the assemblage of points on a continuous line. A few scholars of the time, for example Henry of Harclay (c. 1275–1317) and Nicholas of Autrecourt (c. 1300–69) chose to follow Epicurus in upholding atomism reasonable and attempted to circumvent Aristotle's counterarguments (see Pyle [1997]).

This incipient atomism met with a determined synechist rebuttal, initiated by John Duns Scotus (c. 1266–1308). In his analysis of the problem of “whether an angel can move from place to place with a continuous motion” he offers a pair of purely geometrical arguments against the composition of a continuum out of indivisibles. One of these arguments is that if the diagonal and the side of a square were both composed of points, then not only would the two be commensurable in violation of Book X of Euclid, they would even be equal. In the other, two unequal circles are constructed about a common centre, and from the supposition that the larger circle is composed of points, part of an angle is shown to be equal to the whole, in violation of Euclid's axiom V.

William of Ockham (c. 1280–1349) brought a considerable degree of dialectical subtlety[13] to his analysis of continuity; it has been the subject of much scholarly dispute[14]. For Ockham the principal difficulty presented by the continuous is the infinite divisibility of space, and in general, that of any continuum. The treatment of continuity in the first book of his Quodlibet of 1322–7 rests on the idea that between any two points on a line there is a third—perhaps the first explicit formulation of the property of density—and on the distinction between a continuum “whose parts form a unity” from a contiguum of juxtaposed things. Ockham recognizes that it follows from the property of density that on arbitrarily small stretches of a line infinitely many points must lie, but resists the conclusion that lines, or indeed any continuum, consists of points. Concerned, rather, to determine “the sense in which the line may be said to consist or to be made up of anything.”, Ockham claims that “no part of the line is indivisible, nor is any part of a continuum indivisible.” While Ockham does not assert that a line is actually “composed” of points, he had the insight, startling in its prescience, that a punctate and yet continuous line becomes a possibility when conceived as a dense array of points, rather than as an assemblage of points in contiguous succession.

The most ambitious and systematic attempt at refuting atomism in the 14th century was mounted by Thomas Bradwardine (c. 1290 – 1349). The purpose of his Tractatus de Continuo (c. 1330) was to “prove that the opinion which maintains continua to be composed of indivisibles is false.” This was to be achieved by setting forth a number of “first principles” concerning the continuum—akin to the axioms and postulates of Euclid's Elements—and then demonstrating that the further assumption that a continuum is composed of indivisibles leads to absurdities (see Murdoch [1957]).

The views on the continuum of NicolausCusanus (1401–64), a champion of the actual infinite, are of considerable interest. In his De MenteIdiotae of 1450, he asserts that any continuum, be it geometric, perceptual, or physical, is divisible in two senses, the one ideal, the other actual. Ideal division “progresses to infinity”; actual division terminates in atoms after finitely many steps.

Cusanus's realist conception of the actual infinite is reflected in his quadrature of the circle (see Boyer [1959], p. 91). He took the circle to be an infinilateral regular polygon, that is, a regular polygon with an infinite number of (infinitesimally short) sides. By dividing it up into a correspondingly infinite number of triangles, its area, as for any regular polygon, can be computed as half the product of the apothem (in this case identical with the radius of the circle), and the perimeter. The idea of considering a curve as an infinilateral polygon was employed by a number of later thinkers, for instance, Kepler, Galileo and Leibniz.

The early modern period saw the spread of knowledge in Europe of ancient geometry, particularly that of Archimedes, and a loosening of the Aristotelian grip on thinking. In regard to the problem of the continuum, the focus shifted away from metaphysics to technique, from the problem of “what indivisibles were, or whether they composed magnitudes” to “the new marvels one could accomplish with them” (see Murdoch [1957], p. 325) through the emerging calculus and mathematical analysis. Indeed, tracing the development of the continuum concept during this period is tantamount to charting the rise of the calculus. Traditionally, geometry is the branch of mathematics concerned with the continuous and arithmetic (or algebra) with the discrete. The infinitesimal calculus that took form in the 16th and 17th centuries, which had as its primary subject matter continuous variation, may be seen as a kind of synthesis of the continuous and the discrete, with infinitesimals bridging the gap between the two. The widespread use of indivisibles and infinitesimals in the analysis of continuous variation by the mathematicians of the time testifies to the affirmation of a kind of mathematical atomism which, while logically questionable, made possible the spectacular mathematical advances with which the calculus is associated. It was thus to be the infinitesimal, rather than the infinite, that served as the mathematical stepping stone between the continuous and the discrete.

Johann Kepler (1571–1630) made abundant use of infinitesimals in his calculations. In his Nova Stereometria of 1615, a work actually written as an aid in calculating the volumes of wine casks, he regards curves as being infinilateral polygons, and solid bodies as being made up of infinitesimal cones or infinitesimally thin discs (see Baron [1987], pp. 108–116; Boyer [1969], pp. 106–110). Such uses are in keeping with Kepler's customary use of infinitesimals of the same dimension as the figures they constitute; but he also used indivisibles on occasion. He spoke, for example, of a cone as being composed of circles, and in his Astronomia Nova of 1609, the work in which he states his famous laws of planetary motion, he takes the area of an ellipse to be the “sum of the radii” drawn from the focus.

It seems to have been Kepler who first introduced the idea, which was later to become a reigning principle in geometry, of continuous change of a mathematical object, in this case, of a geometric figure. In his Astronomiae pars Optica of 1604 Kepler notes that all the conic sections are continuously derivable from one another both through focal motion and by variation of the angle with the cone of the cutting plane.

Galileo Galilei (1564–1642) advocated a form of mathematical atomism in which the influence of both the Democritean atomists and the Aristotelian scholastics can be discerned. This emerges when one turns to the First Day of Galileo's Dialogues Concerning Two New Sciences (1638). Salviati, Galileo's spokesman, maintains, contrary to Bradwardine and the Aristotelians, that continuous magnitude is made up of indivisibles, indeed an infinite number of them. Salviati/Galileo recognizes that this infinity of indivisibles will never be produced by successive subdivision, but claims to have a method for generating it all at once, thereby removing it from the realm of the potential into actual realization: this “method for separating and resolving, at a single stroke, the whole of infinity” turns out simply to the act of bending a straight line into a circle. Here Galileo finds an ingenious “metaphysical” application of the idea of regarding the circle as an infinilateral polygon. When the straight line has been bent into a circle Galileo seems to take it that that the line has thereby been rendered into indivisible parts, that is, points. But if one considers that these parts are the sides of the infinilateral polygon, they are better characterized not as indivisible points, but rather as unbendable straight lines, each at once part of and tangent to the circle[15]. Galileo does not mention this possibility, but nevertheless it does not seem fanciful to detect the germ here of the idea of considering a curve as a an assemblage of infinitesimal “unbendable” straight lines.[16]

It was Galileo's pupil and colleague Bonaventura Cavalieri (1598–1647) who refined the use of indivisibles into a reliable mathematical tool (see Boyer [1959]); indeed the “method of indivisibles” remains associated with his name to the present day. Cavalieri nowhere explains precisely what he understands by the word “indivisible”, but it is apparent that he conceived of a surface as composed of a multitude of equispaced parallel lines and of a volume as composed of equispaced parallel planes, these being termed the indivisibles of the surface and the volume respectively. While Cavalieri recognized that these “multitudes” of indivisibles must be unboundedly large, indeed was prepared to regard them as being actually infinite, he avoided following Galileo into ensnarement in the coils of infinity by grasping that, for the “method of indivisibles” to work, the precise “number” of indivisibles involved did not matter. Indeed, the essence of Cavalieri's method was the establishing of a correspondence between the indivisibles of two “similar” configurations, and in the cases Cavalieri considers it is evident that the correspondence is suggested on solely geometric grounds, rendering it quite independent of number. The very statement of Cavalieri's principle embodies this idea: if plane figures are included between a pair of parallel lines, and if their intercepts on any line parallel to the including lines are in a fixed ratio, then the areas of the figures are in the same ratio. (An analogous principle holds for solids.) Cavalieri's method is in essence that of reduction of dimension: solids are reduced to planes with comparable areas and planes to lines with comparable lengths. While this method suffices for the computation of areas or volumes, it cannot be applied to rectify curves, since the reduction in this case would be to points, and no meaning can be attached to the “ratio” of two points. For rectification a curve has, it was later realized, to be regarded as the sum, not of indivisibles, that is, points, but rather of infinitesimal straight lines, its microsegments.

René Descartes (1596–1650) employed infinitesimalist techniques, including Cavalieri's method of indivisibles, in his mathematical work. But he avoided the use of infinitesimals in the determination of tangents to curves, instead developing purely algebraic methods for the purpose. Some of his sharpest criticism was directed at those mathematicians, such as Fermat, who used infinitesimals in the construction of tangents.

As a philosopher Descartes may be broadly characterized as a synechist. His philosophical system rests on two fundamental principles: the celebrated Cartesian dualism—the division between mind and matter—and the less familiar identification of matter and spatial extension. In the MeditationsDescartes distinguishes mind and matter on the grounds that the corporeal, being spatially extended, is divisible, while the mental is partless. The identification of matter and spatial extension has the consequence that matter is continuous and divisible without limit. Since extension is the sole essential property of matter and, conversely, matter always accompanies extension, matter must be ubiquitous. Descartes' space is accordingly, as it was for the Stoics, a plenum pervaded by a continuous medium.

The concept of infinitesimal had arisen with problems of a geometric character and infinitesimals were originally conceived as belonging solely to the realm of continuous magnitude as opposed to that of discrete number. But from the algebra and analytic geometry of the 16th and 17th centuries there issued the concept of infinitesimal number. The idea first appears in the work of Pierre de Fermat (see Boyer [1959]) (1601–65) on the determination of maximum and minimum (extreme) values, published in 1638.

Fermat's treatment of maxima and minima contains the germ of the fertile technique of “infinitesimal variation”, that is, the investigation of the behavior of a function by subjecting its variables to small changes. Fermat applied this method in determining tangents to curves and centres of gravity.

Isaac Barrow[17] (1630–77) was one of the first mathematicians to grasp the reciprocal relation between the problem of quadrature and that of finding tangents to curves—in modern parlance, between integration and differentiation. In his LectionesGeometricae of 1670, Barrow observes, in essence, that if the quadrature of a curve y = f(x) is known, with the area up to x given by F(x), then the subtangent to the curve y = F(x) is measured by the ratio of its ordinate to the ordinate of the original curve.

Barrow, a thoroughgoing synechist, regarded the conflict between divisionism and atomism as a live issue, and presented a number of arguments against mathematical atomism, the strongest of which is that atomism contradicts many of the basic propositions of Euclidean geometry.

Barrow conceived of continuous magnitudes as being generated by motions, and so necessarily dependent on time, a view that seems to have had a strong influence on the thinking of his illustrious pupil Isaac Newton[18] (1642–1727). Newton's meditations during the plague year 1665–66 issued in the invention of what he called the “Calculus of Fluxions”, the principles and methods of which were presented in three tracts published many years after they were written[19] : De analysi per aequation esnumero terminorum infinitas; Methodus fluxionum et serierum infinitarum; and De quadratura curvarum. Newton's approach to the calculus rests, even more firmly than did Barrow's, on the conception of continua as being generated by motion.

But Newton's exploitation of the kinematic conception went much deeper than had Barrow's. In De Analysi, for example, Newton introduces a notation for the “momentary increment” (moment)—evidently meant to represent a moment or instant of time—of the abscissa or the area of a curve, with the abscissa itself representing time. This “moment”—effectively the same as the infinitesimal quantities previously introduced by Fermat and Barrow—Newton denotes by o in the case of the abscissa, and by ova in the case of the area. From the fact that Newton uses the letter v for the ordinate, it may be inferred that Newton is thinking of the curve as being a graph of velocity against time. By considering the moving line, or ordinate, as the moment of the area Newton established the generality of and reciprocal relationship between the operations of differentiation and integration, a fact that Barrow had grasped but had not put to systematic use. Before Newton, quadrature or integration had rested ultimately “on some process through which elemental triangles or rectangles were added together”, that is, on the method of indivisibles. Newton's explicit treatment of integration as inverse differentiation was the key to the integral calculus.

In the Methodus fluxionum Newton makes explicit his conception of variable quantities as generated by motions, and introduces his characteristic notation. He calls the quantity generated by a motion afluent, and its rate of generation a fluxion. The fluxion of a fluent x is denoted by x·, and its moment, or “infinitely small increment accruing in an infinitely short time o”, by x·o. The problem of determining a tangent to a curve is transformed into the problem of finding the relationship between the fluxions x· and z· when presented with an equation representing the relationship between the fluents x and z. (A quadrature is the inverse problem, that of determining the fluents when the fluxions are given.) Thus, for example, in the case of the fluent z = xn, Newton first forms z· + z·o = (x· + x·o)n, expands the right-hand side using the binomial theorem, subtracts z = xn, divides through by o, neglects all terms still containing o, and so obtains z· = nxn−1 x·.

Newton later became discontented with the undeniable presence of infinitesimals in his calculus, and dissatisfied with the dubious procedure of “neglecting” them. In the preface to the De quadraturacurvarum he remarks that there is no necessity to introduce into the method of fluxions any argument about infinitely small quantities. In their place he proposes to employ what he calls the method of prime and ultimate ratio. This method, in many respects an anticipation of the limit concept, receives a number of allusions in Newton's celebrated Principia mathematica philosophiae naturalis of 1687.

Newton developed three approaches for his calculus, all of which he regarded as leading to equivalent results, but which varied in their degree of rigour. The first employed infinitesimal quantities which, while not finite, are at the same time not exactly zero. Finding that these eluded precise formulation, Newton focused instead on their ratio, which is in general a finite number. If this ratio is known, the infinitesimal quantities forming it may be replaced by any suitable finite magnitudes—such as velocities or fluxions—having the same ratio. This is the method of fluxions. Recognizing that this method itself required a foundation, Newton supplied it with one in the form of the doctrine of prime and ultimate ratios, a kinematic form of the theory of limits.

The philosopher-mathematician G. W. F. Leibniz[20] (1646–1716) was greatly preoccupied with the problem of the composition of the continuum—the “labyrinth of the continuum”, as he called it. Indeed we have it on his own testimony that his philosophical system—monadism—grew from his struggle with the problem of just how, or whether, a continuum can be built from indivisible elements. Leibniz asked himself: if we grant that each real entity is either a simple unity or a multiplicity, and that a multiplicity is necessarily an aggregation of unities, then under what head should a geometric continuum such as a line be classified? Now a line is extended and Leibniz held that extension is a form of repetition, so, a line, being divisible into parts, cannot be a (true) unity. It is then a multiplicity, and accordingly an aggregation of unities. But of what sort of unities? Seemingly, the only candidates for geometric unities are points, but points are no more than extremities of the extended, and in any case, as Leibniz knew, solid arguments going back to Aristotle establish that no continuum can be constituted from points. It follows that a continuum is neither a unity nor an aggregation of unities. Leibniz concluded that continua are not real entities at all; as “wholes preceding their parts” they have instead a purely ideal character. In this way he freed the continuum from the requirement that, as something intelligible, it must itself be simple or a compound of simples.

Leibniz held that space and time, as continua, are ideal, and anything real, in particular matter, is discrete, compounded of simple unit substances he termed monads.

Among the best known of Leibniz's doctrines is the Principle or Law of Continuity. In a somewhat nebulous form this principle had been employed on occasion by a number of Leibniz's predecessors, including Cusanus and Kepler, but it was Leibniz who gave to the principle “a clarity of formulation which had previously been lacking and perhaps for this reason regarded it as his own discovery” (Boyer 1959, p. 217). In a letter to Bayle of 1687, Leibniz gave the following formulation of the principle: “in any supposed transition, ending in any terminus, it is permissible to institute a general reasoning in which the final terminus may be included.” This would seem to indicate that Leibniz considered “transitions” of any kind as continuous. Certainly he held this to be the case in geometry and for natural processes, where it appears as the principle Natura non facitsaltus. According to Leibniz, it is the Law of Continuity that allows geometry and the evolving methods of the infinitesimal calculus to be applicable in physics. The Principle of Continuity also furnished the chief grounds for Leibniz's rejection of material atomism.

The Principle of Continuity also played an important underlying role in Leibniz's mathematical work, especially in his development of the infinitesimal calculus. Leibniz's essays Nova Methodusof 1684 and De GeometriRecondita of 1686 may be said to represent the official births of the differential and integral calculi, respectively. His approach to the calculus, in which the use of infinitesimals, plays a central role, has combinatorial roots, traceable to his early work on derived sequences of numbers. Given a curve determined by correlated variables x, y, he wrote dx and dy for infinitesimal differences, or differentials, between the values x and y: and dy/dx for the ratio of the two, which he then took to represent the slope of the curve at the corresponding point. This suggestive, if highly formal procedure led Leibniz to evolve rules for calculating with differentials, which was achieved by appropriate modification of the rules of calculation for ordinary numbers.

Although the use of infinitesimals was instrumental in Leibniz's approach to the calculus, in 1684 he introduced the concept of differential without mentioning infinitely small quantities, almost certainly in order to avoid foundational difficulties. He states without proof the following rules of differentiation:

But behind the formal beauty of these rules—an early manifestation of what was later to flower into differential algebra—the presence of infinitesimals makes itself felt, since Leibniz's definition of tangent employs both infinitely small distances and the conception of a curve as an infinilateral polygon.

Leibniz conceived of differentials dx, dy as variables ranging over differences. This enabled him to take the important step of regarding the symbol d as an operator acting on variables, so paving the way for the iterated application of d, leading to the higher differentials ddx = d2x, d3x = dd2x, and in general dn+1x = ddnx. Leibniz supposed that the first-order differentials dx, dy,…. were incomparably smaller than, or infinitesimal with respect to, the finite quantities x, y,…, and, in general, that an analogous relation obtained between the (n+1)th-order differentials dn+1x and the nth-order differentials dnx. He also assumed that the nth power (dx)n of a first-order differential was of the same order of magnitude as an nth-order differential dnx, in the sense that the quotient dnx/(dx)nis a finite quantity.

For Leibniz the incomparable smallness of infinitesimals derived from their failure to satisfy Archimedes' principle; and quantities differing only by an infinitesimal were to be considered equal. But while infinitesimals were conceived by Leibniz to be incomparably smaller than ordinary numbers, the Law of Continuity ensured that they were governed by the same laws as the latter.

Leibniz's attitude toward infinitesimals and differentials seems to have been that they furnished the elements from which to fashion a formal grammar, an algebra, of the continuous. Since he regarded continua as purely ideal entities, it was then perfectly consistent for him to maintain, as he did, that infinitesimal quantities themselves are no less ideal—simply useful fictions, introduced to shorten arguments and aid insight.

Although Leibniz himself did not credit the infinitesimal or the (mathematical) infinite with objective existence, a number of his followers did not hesitate to do so. Among the most prominent of these was Johann Bernoulli (1667–1748). A letter of his to Leibniz written in 1698 contains the forthright assertion that “inasmuch as the number of terms in nature is infinite, the infinitesimal exists ipso facto.” One of his arguments for the existence of actual infinitesimals begins with the positing of the infinite sequence 1/2, 1/3, 1/4,…. If there are ten terms, one tenth exists; if a hundred, then a hundredth exists, etc.; and so if, as postulated, the number of terms is infinite, then the infinitesimal exists.

Leibniz's calculus gained a wide audience through the publication in 1696, by Guillaume de L'Hôpital (1661–1704), of the first expository book on the subject, the Analyse des InfinimentsPetits Pour L'Intelligence des LignesCourbes. This is based on two definitions:

Variable quantities are those that continually increase or decrease; and constant or standing quantities are those that continue the same while others vary.

The infinitely small part whereby a variable quantity is continually increased or decreased is called the differential of that quantity.

And two postulates:

Grant that two quantities, whose difference is an infinitely small quantity, may be taken (or used) indifferently for each other: or (what is the same thing) that a quantity, which is increased or decreased only by an infinitely small quantity, may be considered as remaining the same.

Grant that a curve line may be considered as the assemblage of an infinite number of infinitely small right lines: or (what is the same thing) as a polygon with an infinite number of sides, each of an infinitely small length, which determine the curvature of the line by the angles they make with each other.

In responding to Nieuwentijdt's assertion that squares and higher powers of infinitesimals vanish, Leibniz objected that it is rather strange to posit that a segment dx is different from zero and at the same time that the area of a square with side dx is equal to zero (Mancosu 1996, 161). Yet this oddity may be regarded as a consequence — apparently unremarked by Leibniz himself — of one of his own key principles, namely that curves may be considered as infinilateral polygons. Consider, for instance, the curve y = x2. Given that the curve is an infinilateral polygon, the infinitesimal straight stretch of the curve between the abscissae 0 and dx must coincide with the tangent to the curve at the origin — in this case, the axis of abscissae — between these two points. But then the point (dx, dx2) must lie on the axis of abscissae, which means that dx2 = 0.

Now Leibniz could retort that that this argument depends crucially on the assumption that the portion of the curve between abscissae 0 and dx is indeed straight. If this be denied, then of course it does not follow that dx2 = 0. But if one grants, as Leibniz does, that that there is an infinitesimal straight stretch of the curve (a side, that is, of an infinilateral polygon coinciding with the curve) between abscissae 0 and e, say, which does not reduce to a single point then e cannot be equated to 0 and yet the above argument shows that e2 = 0. It follows that, if curves are infinilateral polygons, then the “lengths” of the sides of these latter must be nilsquare infinitesimals. Accordingly, to do full justice to Leibniz's (as well as Nieuwentijdt's) conception, two sorts of infinitesimals are required: first, “differentials” obeying= as laid down by Leibniz — the same algebraic laws as finite quantities; and second the (necessarily smaller) nilsquare infinitesimals which measure the lengths of the sides of infinilateral polygons. It may be said that Leibniz recognized the need for the first, but not the seccond type of infinitesimal and Nieuwentijdt, vice-versa. It is of interest to note that Leibnizian infinitesimals (differentials) are realized in nonstandard analysis, and nilsquare infinitesimals in smooth infinitesimal analysis (for both types of analysis see below). In fact it has been shown to be possible to combine the two approaches, so creating an analytic framework realizing both Leibniz's and Nieuwentijdt's conceptions of infinitesimal.

The insistence that infinitesimals obey precisely the same algebraic rules as finite quantities forced Leibniz and the defenders of his differential calculus into treating infinitesimals, in the presence of finite quantities, as if they were zeros, so that, for example, x + dx is treated as if it were the same asx. This was justified on the grounds that differentials are to be taken as variable, not fixed quantities, decreasing continually until reaching zero. Considered only in the “moment of their evanescence”, they were accordingly neither something nor absolute zeros.

The leading practitioner of the calculus, indeed the leading mathematician of the 18th century, was Leonhard Euler[23] (1707–83). Philosophically Euler was a thoroughgoing synechist. Rejecting Leibnizianmonadism, he favoured the Cartesian doctrine that the universe is filled with a continuous ethereal fluid and upheld the wave theory of light over the corpuscular theory propounded by Newton.

Euler rejected the concept of infinitesimal in its sense as a quantity less than any assignable magnitude and yet unequal to 0, arguing: that differentials must be zeros, and dy/dx the quotient 0/0. Since for any number α, α · 0 = 0, Euler maintained that the quotient 0/0 could represent any number whatsoever[24]. For Euler qua formalist the calculus was essentially a procedure for determining the value of the expression 0/0 in the manifold situations it arises as the ratio of evanescent increments.

But in the mathematical analysis of natural phenomena, Euler, along with a number of his contemporaries, did employ what amount to infinitesimals in the form of minute, but more or less concrete “elements” of continua, treating them not as atoms or monads in the strict sense—as parts of a continuum they must of necessity be divisible—but as being of sufficient minuteness to preserve their rectilinear shape under infinitesimal flow, yet allowing their volume to undergo infinitesimal change. This idea was to become fundamental in continuum mechanics.

While Euler treated infinitesimals as formal zeros, that is, as fixed quantities, his contemporary Jean le Rondd'Alembert (1717–83) took a different view of the matter. Following Newton's lead, he conceived of infinitesimals or differentials in terms of the limit concept, which he formulated by the assertion that one varying quantity is the limit of another if the second can approach the other more closely than by any given quantity. D'Alembert firmly rejected the idea of infinitesimals as fixed quantities, and saw the idea of limit as supplying the methodological root of the differential calculus. For d'Alembert the language of infinitesimals or differentials was just a convenient shorthand for avoiding the cumbrousness of expression required by the use of the limit concept.

Infinitesimals, differentials, evanescent quantities and the like coursed through the veins of the calculus throughout the 18th century. Although nebulous—even logically suspect—these concepts provided, faute de mieux, the tools for deriving the great wealth of results the calculus had made possible. And while, with the notable exception of Euler, many 18th century mathematicians were ill-at-ease with the infinitesimal, they would not risk killing the goose laying such a wealth of golden mathematical eggs. Accordingly they refrained, in the main, from destructive criticism of the ideas underlying the calculus. Philosophers, however, were not fettered by such constraints.

The philosopher George Berkeley (1685–1753), noted both for his subjective idealist doctrine ofesseestpercipi and his denial of general ideas, was a persistent critic of the presuppositions underlying the mathematical practice of his day (see Jesseph [1993]). His most celebrated broadsides were directed at the calculus, but in fact his conflict with the mathematicians went deeper. For his denial of the existence of abstract ideas of any kind went in direct opposition with the abstractionist account of mathematical concepts held by the majority of mathematicians and philosophers of the day. The central tenet of this doctrine, which goes back to Aristotle, is that the mind creates mathematical concepts by abstraction, that is, by the mental suppression of extraneous features of perceived objects so as to focus on properties singled out for attention. Berkeley rejected this, asserting that mathematics as a science is ultimately concerned with objects of sense, its admitted generality stemming from the capacity of percepts to serve as signs for all percepts of a similar form.

At first Berkeley poured scorn on those who adhere to the concept of infinitesimal. maintaining that the use of infinitesimals in deriving mathematical results is illusory, and is in fact eliminable. But later he came to adopt a more tolerant attitude towards infinitesimals, regarding them as useful fictions in somewhat the same way as did Leibniz.

In The Analyst of 1734 Berkeley launched his most sustained and sophisticated critique of infinitesimals and the whole metaphysics of the calculus. Addressed To an Infidel Mathematician[25], the tract was written with the avowed purpose of defending theology against the scepticism shared by many of the mathematicians and scientists of the day. Berkeley's defense of religion amounts to the claim that the reasoning of mathematicians in respect of the calculus is no less flawed than that of theologians in respect of the mysteries of the divine.

Berkeley's arguments are directed chiefly against the Newtonian fluxional calculus. Typical of his objections is that in attempting to avoid infinitesimals by the employment of such devices as evanescent quantities and prime and ultimate ratios Newton has in fact violated the law of noncontradiction by first subjecting a quantity to an increment and then setting the increment to 0, that is, denying that an increment had ever been present. As for fluxions and evanescent increments themselves, Berkeley has this to say:

And what are these fluxions? The velocities of evanescent increments? And what are these same evanescent increments? They are neither finite quantities nor quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?

Nor did the Leibnizian method of differentials escape Berkeley's strictures.

The opposition between continuity and discreteness plays a significant role in the philosophical thought of Immanuel Kant (1724–1804). His mature philosophy, transcendental idealism, rests on the division of reality into two realms. The first, the phenomenal realm, consists of appearances or objects of possible experience, configured by the forms of sensibility and the epistemic categories. The second, the noumenal realm, consists of “entities of the understanding to which no objects of experience can ever correspond”, that is, things-in-themselves.

Regarded as magnitudes, appearances are spatiotemporally extended and continuous, that is infinitely, or at least limitlessly, divisible. Space and time constitute the underlying order of phenomena, so are ultimately phenomenal themselves, and hence also continuous.

As objects of knowledge, appearances are continuous extensive magnitudes, but as objects of sensation or perception they are, according to Kant, intensive magnitudes. By an intensive magnitude Kant means a magnitude possessing a degree and so capable of being apprehended by the senses: for example brightness or temperature. Intensive magnitudes are entirely free of the intuitions of space or time, and “can only be presented as unities”. But, like extensive magnitudes, they are continuous. Moreover, appearances are always presented to the senses as intensive magnitudes.

In the Critique of Pure Reason (1781) Kant brings a new subtlety (and, it must be said, tortuousity) to the analysis of the opposition between continuity and discreteness. This may be seen in the second of the celebrated Antinomies in that work, which concerns the question of the mereological composition of matter, or extended substance. Is it (a) discrete, that is, consists of simple or indivisible parts, or (b) continuous, that is, contains parts within parts ad infinitum? Although (a), which Kant calls the Thesis and (b) the Antithesis would seem to contradict one another, Kant offers proofs of both assertions. The resulting contradiction may be resolved, he asserts, by observing that while the antinomy “relates to the division of appearances”, the arguments for (a) and (b) implicitly treat matter or substance as things-in-themselves. Kant concludes that both Thesis and Antithesis “presuppose an inadmissible condition” and accordingly “both fall to the ground, inasmuch as the condition, under which alone either of them can be maintained, itself falls.”

Kant identifies the inadmissible condition as the implicit taking of matter as a thing-in-itself, which in turn leads to the mistake of taking the division of matter into parts to subsist independently of the act of dividing. In that case, the Thesis implies that the sequence of divisions is finite; the Antithesis, that it is infinite. These cannot be both be true of the completed (or at least completable) sequence of divisions which would result from taking matter or substance as a thing-in-itself.[26]Now since the truth of both assertions has been shown to follow from that assumption, it must be false, that is, matter and extended substance are appearances only. And for appearances, Kant maintains, divisions into parts are not completable in experience, with the result that such divisions can be considered, in a startling phrase, “neither finite nor infinite”. It follows that, for appearances, both Thesis and Antithesis are false.

Later in the Critique Kant enlarges on the issue of divisibility, asserting that, while each part generated by a sequence of divisions of an intuited whole is given with the whole, the sequence's incompletability prevents it from forming a whole; a fortiori no such sequence can be claimed to be actually infinite.

Finally, a brief word on the models of SIA. These are the so-called smooth toposes, categories (see entry on category theory) of a certain kind in which all the usual mathematical operations can be performed but whose internal logic is intuitionistic and in which every map between spaces is smooth, that is, differentiable without limit. It is this “universal smoothness” that makes the presence of infinitesimal objects such as Δ possible. The construction of smooth toposes (see Moerdijk and Reyes [1991]) guarantees the consistency of SIA with intuitionistic logic. This is so despite the evident fact that SIA is not consistent with classical logic.

 

 

 

Bibliography

1.     Aristotle (1980). Physics, 2 volumes, trans. Cornford and Wickstead. Loeb Classical Library, Cambridge, MA: Harvard University Press and Heinemann.

2.     ––– (1996). Metaphysics, Oeconomica, Magna Moralia, 2 volumes, trans. Cooke and Tredinnick. Loeb Classical Library, Cambridge, MA: Harvard University Press.

3.     ––– (1996a). The Categories, On Interpretation, Prior Analytics, trans. Cooke and Tredinnick. Loeb Classical Library, Cambridge, MA: Harvard University Press.

4.     ––– (2000). On the Heavens, trans. Guthrie. Loeb Classical Library, Cambridge, MA: Harvard University Press.

5.     ––– (2000a). On Sophistical Refutations, On Coming-to-Be and Passing Away, On the Cosmos, trans. Forster and Furley. Loeb Classical Library, Cambridge, MA: Harvard University Press.

6.     Arthur, R.T.W. (2009). “Actual infinitesimals in Leibniz`s early thought,” in The Philosophy of the Young Leibniz (StudiaLeibnitzianaSonderhefte 35), M. Kurstad, M. Maeke and D. Snyder (eds.), Stuttgart: Franz Stener, pp. 11–28.

7.     Barnes, J. (1986).The Presocratic Philosophers, London: Routledge.

8.     Baron, M. E. (1987). The Origins of the Infinitesimal Calculus, New York: Dover.

9.     Beeson, M.J. (1985). Foundations of Constructive Mathematics, Berlin: Springer-Verlag.

10. Bell, E. T. (ed.) (1945). The Development of Mathematics, 2nd, New York: McGraw-Hill.

11. ––– (1965). Men of Mathematics, 2 volumes, London: Penguin Books.

12. Bell, J. L. (1998). A Primer of Infinitesimal Analysis, Cambridge: Cambridge University Press.

13. ––– (2000). “Hermann Weyl on intuition and the continuum,” PhilosophiaMathematica, 8: 259–273.

14. ––– (2001). “The continuum in smooth infinitesimal analysis,” in Schuster, Berger and Osswald (2001), pp. 19–24.

15. ––– (2003). “Hermann Weyl’s later philosophical views: his divergence from Husserl,” in Husserl and the Sciences, R. Feist (ed.), Ottawa: University of Ottawa Press.

16. ––– (2005) The Continuous and the Infinitesimal in Mathematics and Philosophy, Milan: Polimetrica S.A.

17. Berkeley, G. (1960). Principles of Human Knowledge, New York: Doubleday.

18. Bishop, E. (1967). Foundations of Constructive Analysis, New York: McGraw-Hill.

19. Bishop, E., and D. Bridges (1985). Constructive Analysis, Berlin: Springer.

20. Bolzano, B. (1950). Paradoxes of the Infinite, trans. Prihovsky, London: Routledge&Kegan Paul.

21. Bos, H. (1974). “Differentials, higher order differentials and the derivative in the Leibnizian Calculus,” Archive for History of Exact Sciences, 14: 1–90.

22. Boyer, C., (1959). The History of the Calculus and its Conceptual Development, New York: Dover.

23. ––– (1968). A History of Mathematics, New York: Wiley.

24. ––– and U. Merzbach (1989). A History of Mathematics, 2nd edition, New York: Wiley.

25. Brentano, F. (1988). Philosophical Investigations on Space, Time and the Continuum trans. Smith, London: Croom Helm.