Ñîâðåìåííûå èíôîðìàöèîííûå òåõíîëîãèè/1. Êîìïüþòåðíàÿ èíæåíåðèÿ

cand. tech. sci. Semakhin A.M.

Kurgan State University, Russia

METHOD GOMORY IN THE DECISION OF THE INTEGER PROBLEM OF OPTIMIZATION OF INFORMATION SYSTEM

 

Integer linear programming is focused on the decision of problems of linear programming in which all or some variables accept integer values /1/.

For the decision of an integer task of linear programming Ralph E. Gomory has offered the cutting-plane method in 1958 /2/.

The Gomory’s algorithm contains stages:

The stage 1. The integrity is ignored, the simplex method is found the optimum plan. If the decision fractional transition to 2 stage.

Stage 2. The decision of the expanded problem /2/.

Let's develop integer mathematical model of information system and we shall define the optimum decision by cutting-plane method.

The mathematical model is formulated as follows: from among the firms, rendering services satellite Internet in territory of the Russian Federation, it is required to choose the provider satellite Internet with the maximal size of the pure resulted effect (NPV) and satisfying to financial restrictions /3/.

Let  - share of financing of the project NTV-plus,  - share of financing of project Europe On Line,  - share of financing of project Astra Network,  - share of financing of project Satpro,  - share of financing of project Network Service.  - binary variables.

The integer mathematical model looks like

subject to

Let's solve a continuous problem. We shall lead to the standard form and we shall make the initial Jordan’s table (table 1).

                                                                                      Table 1

The initial Jordan’s table

 

ÁÏ

1

-

-

-

-

-

=

6.5

5.4

3.2

2.931

6.286

5.9

=

3.0

2.006437

1.5

3.000547

3.000575

3.2

=

3.0

0.0

2.5

2.0

0.0

1.6

=

1.5

0.0

0.881832

0.0

0.0

1.186

Z=

0

-1.52727

-0.741239

-1.374394

-0.14511

-0.530312

 

The first iteration is resulted in table 2.

                                                                                            Table 2

The first iteration

 

ÁÏ

1

-

-

-

-

-

=

=

0,58484

-0,371563

0,311

1,911498

0,664934

1,007782

=

3,0

0

2,5

2,0

0

1,6

=

1,5

0

0,881832

0

0

1,186

Z=

1,83838

0,282827

0,16381

-0,545426

1,632745

1,138371

 

The optimum decision of a continuous problem is resulted in table 3.

Transition to the second stage of Gomory’s algorithm.

The basic variable gets out  with the greatest fractional part: , , . The equation is worked out for variable .

The expanded problem and the third iteration are presented in table 4 and table 5.

                                                                                      Table 3

The optimum decision of a continuous problem. The second iteration

 

ÁÏ

1

-

-

-

-

-

=

1,037635

0,290692

0,504283

-0,283954

0,975263

0,806429

=

0,305961

-0,194383

0,1627

0,52315

0,34786

0,527221

=

2,388078

0,388766

2,174601

-1,0463

-0,69572

0,545558

=

1,5

0

0,881832

0

0

1,186

Z=

2,00526

0,176807

0,252551

0,28534

1,822477

1,425931

 

                                                                                      Table 4

The expanded problem with the first additional restriction

 

ÁÏ

1

-

-

-

-

-

=

1,037635

0,290692

0,504283

-0,283954

0,975263

0,806429

=

0,305961

-0,194383

0,1627

0,52315

0,34786

0,527221

=

2,388078

0,388766

2,174601

-1,0463

-0,69572

0,545558

=

1,5

0

0,881832

0

0

1,186

=

-0,305961

0,194383

-0,1627

-0,52315

-0,34786

-0,527221

Z=

2,00526

0,176807

0,252551

0,28534

1,822477

1,425931

 

The optimum nonintegral decision is resulted in table 6.

The expanded problem with the second additional restriction is presented in table 7.

The fifth iteration is resulted in table 8

The expanded problem and the optimum integer decision are presented in table 9 and table 10. The optimum integer plan = is presented in table 10. Value of criterion function is equaled 1.52727.

                                                                                      Table 5

The third iteration

 

ÁÏ

1

-

-

-

-

-

=

0,569642

0,588017

0,25542

-1,084156

0,443182

1,529584

=

0

0

0

0

0

1

=

2,071475

0,58991

2,006242

-1,587645

-1,055679

1,034781

=

0,811731

0,437271

0,515833

-1,176842

-0,782522

2,249531

=

0580328

-0,368694

0,308599

0,992278

0,659799

-1,896738

Z=

1,177753

0,702539

-0,18749

-1,129581

0,881649

2,704617

 

                                                                                      Table 6

The optimum nonintegral decision. The fourth iteration

 

ÁÏ

1

-

-

-

-

-

=

1,203704

0,185185

0,592593

1,09259

1,164074

-0,542779

=

0

0

0

0

0

1

=

3

0

2,5

1,6

0

-2

=

1,5

0

0,881832

1,186

0

0

=

0,584844

-0,371563

0,311001

1,007782

0,664934

-1,911499

Z=

1,838386

0,282829

0,16381

1,13837

1,632745

0,545424

 

                                                                                      Table 7

The expanded problem with the second additional restriction

 

ÁÏ

1

-

-

-

-

-

=

1,203704

0,185185

0,592593

1,09259

1,164074

-0,542779

=

0

0

0

0

0

1

=

3

0

2,5

1,6

0

-2

=

1,5

0

0,881832

1,186

0

0

=

0,584844

-0,371563

0,311001

1,007782

0,664934

-1,911499

=

-0,203704

-0,185185

-0,592593

-0,09259

-0,164074

0,542779

Z=

1,838386

0,282829

0,16381

1,13837

1,632745

0,545424

                                                                                      Table 8

Cutting off of a fractional part of variable . The fifth iteration

 

ÁÏ

1

-

-

-

-

-

=

1

0

1

1

1

0

=

0

0

0

0

0

1

=

2,14062

-0,781249

4,21875

1,20939

-0,692187

0,289847

=

1,19687

-0,275572

1,48809

1,04822

-0,244157

0,807704

=

0,477937

-0,468751

0,524814

0,959189

0,578826

-1,62664

=

0,34375

0,312499

-1,6875

0,156246

0,276875

-0,915939

Z=

1,78208

0,231638

0,276429

1,11278

1,58739

0,695464

 

                                                                                      Table 9

The expanded problem with the third additional restriction

 

ÁÏ

1

-

-

-

-

-

=

1

0

1

1

1

0

=

0

0

0

0

0

1

=

2,14062

-0,781249

4,21875

1,20939

-0,692187

0,289847

=

1,19687

-0,275572

1,48809

1,04822

-0,244157

0,807704

=

0,477937

-0,468751

0,524814

0,959189

0,578826

-1,62664

=

0,34375

0,312499

-1,6875

0,156246

0,276875

-0,915939

=

-0,34375

-0,312499

0,68785

-0,156246

-0,276875

0,915939

Z=

1,78208

0,231638

0,276429

1,11278

1,58739

0,695464

 

Results of the lead researches have allowed to draw following conclusions.

1. The integer mathematical model of optimization of the information system is developed, allowing to reduce expenses and terms of designing of information systems and to raise validity of accepted decisions.

2. The optimum decision of an integer problem of optimization of information system is found by the cutting-plane method. For a finding of the integer optimum plan six iterations are executed and three additional restrictions are entered.

 

                                                                             Table 10

The optimum integer decision. The sixth iteration

ÁÏ

1

-

-

-

-

-

=

1

0

1

1

1

0

=

0

0

0

0

0

1

=

3

-2,5

2,5

1,60001

0

-2

=

1,5

-0,881833

0,88183

1,186

0

0

=

0,993565

-1,50001

-0,506442

1,19356

0,994141

-3,00056

=

0

1

-1

0

0

0

=

1,1

-3,20001

-2,20001

0,499989

0,886003

-2,93101

Z=

1,52727

0,741244

0,786034

0,996964

1,38216

1,3744

 

References:

 

1. Hamdy A Taha Operations Research: An Introduction. Seven Edition - Ì.: Publishing house "Williams", 2005 - 912 p.

2. Êînuhovski P. V. Mathematical methods of research of operations in economy. – SPb.: Publishing house " Peter ", 2000. - 208 p.

3. Semakhin A.M. The analysis of mathematical model of information system. In the collection of materials X of the All-Russia scientifically-practical conference with the international participation (on November, 25-26th, 2011). - Tomsk: : Publishing house of Tomsk university . Part 2 - 206 p.