Автор: Бабенко К.Р.

Руководитель: Ивахненко Н.Н 

Донецкий национальный университет экономики и торговли им. Туган-Барановского

 

Теория вероятности

Вероятность (вероятностная мера) — численная мера возможности наступления некоторого события.

Теория вероятности - это один из самый интересных разделов науки Высшая математики.

Данная теория, является сложной дисциплиной, имеет применение в реальной жизни. Она представляет несомненную ценность для общего образования. Это наука позволяет не только получать знания, которые помогают понимать закономерности окружающего мира, но и находить практическое применение в повседневной жизни.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа , в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год). Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные: П .Л. Чебышев,  А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова

Так каждому из нас каждый день приходится принимать множество решений в условиях неопределенности. Однако эту неопределенность можно «превратить» в некоторую определенность. И тогда это знание может оказать существенную помощь при принятии решения.

Разберем пример: я хочу иметь отличную фигуру! Для того чтобы быть физически здоровым мне необходимо делать ряд упражнений. Ежедневные тренировки приведут меня к физическому успеху. Если я провожу 2 тренировки в 7 дней, то получается Р(А)=2/7=0,29 (или 29% из 100% возможных). Это малая вероятность того, что мое тело приобретет нужную форму в нужное время. Для этого оптимальный вариант заниматься ежедневно, т.е. 7 тренировок за 7 дней m=n; 7=7; Р(А)=7/7=1 (100%) Следовательно данное событие приобретает достоверную форму. Если мы не тренируемся и m=0, то о какой фигуре может идти речь, при m=0 событие не достоверно.

Рассмотрим еще один пример применения теории вероятности. Можно ли выиграть в лотерею или рулетку?

Каждый из нас хоть раз в жизни покупал лотерею или играл в азартные игры, но далеко не все использовали заранее спланированную стратегию. Умные игроки давно перестали надеяться на удачу и включили рациональное мышление.
Дело в том, что каждое событие имеет определенное математическое ожидание, как гласит высшая математика и теория вероятности, и, если правильно оценивать ситуацию, то можно обойти неудовлетворительный исход события.

К примеру, в любой игре, такой, как рулетка, есть возможность играть с вероятностью на выигрыш 50%, ставя на выпадение четного числа, или красной ячейки. Вот как раз эту игру мы и рассмотрим.

Для обеспечения прибыли, составим несложную стратегию игры. К примеру, мы имеем возможность посчитать, с какой вероятностью выпадет четное число 10 раз подряд - 0,5*0,5 и так 10 раз. Умножаем на 100% и получаем всего 0,097%, или же, примерно, 1 шанс из 1 000.
Столько игр, пожалуй, сыграть вам не удастся и за всю свою жизнь, значит, вероятность выпадения 10 четных чисел подряд практически равна «0». Воспользуемся этой тактикой игры на практике.
Но это еще не все, даже 1 раз из 1 000 – это для нас много, так что сократим это число до 1 из 10 000. Вы спросите, каким образом это можно сделать, не увеличивая заранее предполагаемое количество выпадения четных чисел подряд? Ответ прост – время. Подходим к рулетке и ждем, пока выпадет 2 раза подряд четное число. Это будет каждый раз из четырех расчетных случаев. Теперь ставим минимальную ставку на четное число, к примеру, 5р, и выигрываем по 5р за каждое выпадение четного числа, вероятность которого 50%. Если же выпало нечетное, то увеличиваем следующую ставку в 2 раза, то есть ставим уже 10р. В этом случае вероятность проиграть будет равна 6%. Но не паникуйте, если даже в этот раз вы проиграете! Делайте повышение каждый раз в два раза больше. С каждым разом математическое ожидание на выигрыш увеличивается, и Вы в любом случае останетесь в прибыли. Важно учесть тот факт, что эта стратегия подходит только для малых ставок, так как, изначально поставив большие деньги - Вы рискуете проиграть все из-за ограничений ставок в будущем. Если у Вас возникли сомнения по данной тактике, сыграйте с другом в угадывание стороны монеты на вымышленные деньги, ставя при проигрыше ставку в два раза больше. Через время Вы убедитесь, что эта методика проста на практике и очень эффективна! Можно сделать вывод, что играя по данной стратегии, Вы не заработаете миллионы, а лишь выиграете себе на мелкие расходы.


Литература:

1)     Гнеденко, Б. В. «Курс теории вероятностей», — М.: Наука, 1988.

2)     Булинский, А. В., Ширяев, А. Н. «Теория случайных процессов», М.: Физматлит, 2003.

3)     Ахтямов, А. М. «Экономико-математические методы» 

4)     Булдык, Г. М. «Теория вероятностей и математическая статистика», Мн., Высш. шк., 1989

5)     Баврин, И. И. « Высшая математика»