ÓÄÊ 599:574.4+577.15

Åêîëîã³ÿ. Åêîëîã³÷íèé ìîí³òîðèíã

O.M. Vasilyuk

Äí³ïðîïåòðîâñüêèé íàö³îíàëüíèé óí³âåðñèòåò ³ì. Îëåñÿ Ãîí÷àðà

Effect of Nickel on Aspartat Aminotransferase activity in Glechoma hederacea L. leaves subject to excretory function of Mammalia

Introduction

We have studied a variety sensitive and simple methods of environmental impact assessment, leading to creation of measures designed to preserve and restore natural biodiversity in areas where diversity has been depleted by man. Thus, the salt stress have been determined (Dzyubak and Vasilyuk, 2009; Vasilyuk and Dzyubak, 2009; Kulik and Vasilyuk, 2009; Shavrukov, 2013), the effect of herbicide and plant growth regulators (Vasilyuk and Kordin, 2005; Vasilyuk and Vinn³chenko, 2006; Vasilyuk and Grycenko, 2008), mechanisms of  protection from heavy metals (HM) in plants and resistance against salinity (Varennes A. et al., 1996; Gardea-Torresdey J.L. et al., 2005; Sun et al., 2013; Martín et al., 2013), cold shock and the specificity and nonspecific biochemical reactions to these factors have been established (Hébrard et al., 2013; Naji and Devaraj, 2011). The mechanisms of plant resistance to HM (Perfetto B. et al., 2006; Lefcort et al., 2013) involves both mechanical mechanisms (Vasilyuk and Kulik, 2008, 2009, 2011, 2011) mechanical protection of HM (in the root system) and biochemical metabolisms: plant growth regulators (PGR), phytohormones, vitamins (Clemans, 2001; Bernini et al., 2010), organic compounds (Gallie, D.R., 2013) metabolism under the HM: Cd, Co, Mn, Cr (Vestena et al., 2011; Hameed A. et al., 2011; Hasan et al., 2011; Ruscitti et al., 2011; Millaleo et al., 2013; Becerril et al., 2013). We researched the effect of nickel on plant organisms, nickel being one of the most widespread pollutants in Dnipropetrovs’k region. Nickel belongs to the category of HM on account of its weight, density, toxicity (Alexeev, 1987; B³lanich, 2008; Clemans, 2001). A reduction of toxicity of Ni ions has been facilitated by such environmental factors as the digging activity of Mammalia (Pakhomov and Vasilyuk, 2011, 2013). Digging activity by Mammalia (Bulakhov and Pakhomov, 2006) affects the physical (hardness, humidity, thermal treatment) and chemical properties of soils (aminoacid composition, soil respiration, microbial and enzymatic activity). Therefore, mammals as biotic factors play a role in ecological restoration of technologically contaminated and biodiversity - depleted areas. A creative environmental role in the creation of ecological buffers against anthropogenic impact on biota, in the process of self-purification of soil, and the restoration of biodiversity in conditions of human impacts on biota is played by mammals. The excretory function of Mammalia both directly and indirectly affected the chemical and biological processes, which was of great practical importance. Using the enzymes of nitrogen metabolism, as a highly sensitive indicator for environmental change, we determined the impact of HM (anthropogenic factors) and excretory function of Mammalia (environmental factor) on plant specimens.

Materials and methods

The experiment was carried out at the International Biosphere Prysamarsky Station (Andriivka village, Novomoskovsk district, Dnipropetrovsk region) in natural floodplain oak forest in a sward area with lime-ash oak and greater stitchwort (Stellaria holostea L.). We studied the excretory function of Mammalia, taking the European mole (Talpa europaea L.) as our example under the condition of artificial Ni soil pollution. As a control we selected an area unaffected by mammals and without Ni pollution. Ni was introduced  onto the soil surface in the form of a salt solution Ni(NO3)2*6H2O with concentrations of 0,2; 1,0; 2,0 g/m2, which was equivalent to the presence of Ni at 1, 5, 10 times the dose of maximum allowable concentration (MAC). To prevent contamination of the surrounding soil layers by nickel we used isolated soil blocks for our experiment - on the perimeter of each plot vertically placed plates of inert impermeable material were placed into the ground to a depth of 20 cm. A month later we determined the total enzyme activity (nM pyruvic acid/ml*s) of Aspartate Aminotransferase (AST, 2.6.1.1.) by the of method of Polevoy and Maximov (2008), as indicators of the ecological condition of the environment, and the concentration of water-soluble fraction of protein (C, mg/ml) by method of Bradford (1976) in the leaves of Glechoma hederacea L., which dominated in this research area. It was found that AST and ALT (Alanine Aminotransferase (Alt, 2.6.1.2.)), are the part of the system which utilizes the primary product of photosynthesis in the C4 aspartate plants group – aspartate which is formed in the leaf mesophyll of plants. The reliable difference between the samples in this paper was considered to be at p <0,05. The experiment on excretory function of Mammalia and Ni to restore the biodiversity of anthropogenically polluted areas on the background of exogenous nickel was performed under the following schemes:

- control (the area without pollution of Ni and excretory function of Mammalia), control Ni at a dose 1 ÌAÑ, combined effect of excretory function of Sus scrofa and Ni at a dose 1 ÌAÑ, combined effect of excretory function of Capreolus capreolus and Ni at a dose 1 ÌAÑ, control Ni at a dose 5 ÌAÑ, combined effect of Sus scrofa and Ni at a dose 5 ÌAÑ, combined effect of Capreolus capreolus and Ni at a dose 5 ÌAÑ, control Ni at a dose 10 ÌAÑ, combined effect of Sus scrofa and Ni at a dose 10 ÌAÑ, combined effect of Capreolus capreolus and Ni at a dose 10 ÌAÑ.

Results and discussion

Addition of salts of nickel in the range of concentrations (1 ÌAÑ, 5 ÌAÑ, 10 ÌAÑ) produced a reliable (t/t 0, 05=1,94; 3,38; 1,02) decrease in AST activity by 18% - 65% in the Glechoma hederacea L. for all variants of the experiment relative to control (the area without Ni pollution and without of excretory function of Mammalia), which disproves the null hypothesis H0d=0 (under conditions of  criterion of significant differences t/t 0, 05≥1, H0d=0 is discarded). This fact proved the toxic influence of the metal on the growth and development of plants and soils in these concentrations. The concentration of water-soluble protein fraction in the Glechoma hederacea L. leaves under the range of Ni concentrations was inhibited in all variants of the experiment by 31%-64% (t/t 0, 05=1,50; 3,14; 3,87), which proved the toxic effect of nickel ions (Table 1).

Table 1

The effect of nickel on total Aspartate Aminotransferase  activity and concentration of water-soluble protein fraction in the Glechoma hederacea L. leaves

 

The variant of the experiment

X± m

Value of experiment 

relative to control, %

t/t0,05

AST

Êîíòðîëü

0,88±0,222

100,00

-

Ni 1 ÌAÑ

0,53±0,088

60,81

1,94

Ni 5 ÌAÑ

0,31±0,051

35,14

3,38

Ni 10 ÌAÑ

0,72±0,184

82,43

1,02

Water-soluble protein fraction

Êîíòðîëü

1,82±0,285

100,00

-

Ni 1 ÌAÑ

1,26±0,061

69,40

1,50

Ni 5 ÌAÑ

0,67±0,033

36,79

3,14

Ni 10 ÌAÑ

1,20±0,127

65,60

3,87

   Note: X - average; ± m - confidence interval; t/t0, 05 – criterion of significant differences when P <0.05;    Í0d = 0 is rejected under conditions t/t 0,05 ≥ 1;

 

Adding the nickel salts at a dose of 1 ÌAÑ under the influence of excretory function of Sus scrofa L. and Capreolus capreolus L. (combined effect of anthropogenic and natural factors) contributed to a reliable (t/t0,05=1,78; 1,33) increase in AST activity by 53% and 41% compared with control (ñontrol Ni 1 ÌAÑ) accordingly, increase in AST activity by 61% (t/t0,05 =1,45) and 30% (t/t0,05 =1,03) compared with control (control Ni 5 ÌAÑ) accordingly, whereas with an increasing concentration factor (Ni 10 MAC), activity of AST was significantly reduction  by 25%  (t/t0,05=1,22) and 42% (t/t0,05=1,78) compared with control (control Ni 10 ÌAÑ) accordingly. Thus, the excretory function of mammals promoted the intensification of nitrate metabolism under the medium and low concentrations of Ni, but under the high concentrations of the metal, the excretory function of Mammalia did not diminish the toxic effect of Ni, which proved the harmful effects of  Ni on the process of self-healing in biological systems (table 2).

Table 2

The effect of combined excretory function of Mammalia and Ni on total Aspartate Aminotransferase activity in Glechoma hederacea L. leaves

 

The variant of the experiment

X± m

Value of experiment  relative to control, %

t/t0,05

Control: Ni 1ÌÐÑ

0,53±0,081

100,00

-

 

Sus scrofa L. + Ni 1ÌÐÑ

0,82±0,083

153,37

1,78

 

Capreolus capreolus L. + Ni 1ÌÐÑ

0,75±0,088

140,05

1,33

 

Control: Ni 5ÌÐÑ

0,31±0,051

100,00

-

 

Sus scrofa L. + Ni 5ÌÐÑ

0,50±0,085

161,51

1,45

 

Capreolus capreolus L. + Ni 5 ÌÐÑ

0,40±0,051

130,80

1,03

 

Control:  Ni ÌÐÑ

0,73±0,102

100,00

-

 

Sus scrofa L. +  Ni 10 ÌÐÑ

0,56±0,051

75,81

1,22

 

Capreolus capreolus L. + Ni 10ÌÐÑ

0,43±0,084

58,06

1,78

 

Note: see Table 1

 

It was observed that the combined effect of excretory function of Sus scrofa L., Capreolus capreolus L and nickel reliably (t/t0,05=4,64; t/t0,05=2,00)  increased the concentration of water-soluble protein fractions by 123% and 48% compared with controls (Ni 1 ÌAÑ) accordingly, by 32% and 8% (t/t0,05=2,75; t/t0,05=1,03) compared with controls (Ni 5 ÌAÑ) accordingly. The excretory function of Sus scrofa L. and Capreolus capreolus L under the maximum concentration of nickel (Ni 10 ÌAÑ) did not provide a reduction in metal toxicity, there was a reliable (t/t0,05=1,58; t/t0,05=1,11) reduction in the concentration of water-soluble proteins fraction by 21% and 10% compared to the control (control Ni 10 ÌAÑ). The excretory function of mammals under conditions of nickel salts at the maximum dose did not provide a reduction of metal toxicity due to the inability of biological systems to adapt and restore functional activity of metabolic processes at this concentration. The representatives of Mammalia reduced anthropogenic pressure, produced a reduction of toxicity of metal components in biosystems and the environment under the low and medium doses of nickel (Table 3).

Table 3

The effect of combined excretory function of Mammalia and Ni on the concentration of water-soluble protein fraction in Glechoma hederacea L. leaves

 

Âàð³àíòè äîñë³äó

X± m

Ì, %

t/t0,05

Control: Ni 1ÌÐÑ

1,26±0,061

100,00

 -

Sus scrofa L. + Ni 1ÌÐÑ

2,83±0,257

223,81

4,64

Capreolus capreolus L. + Ni 1ÌÐÑ

1,87±0,229

148,03

2,00

Control: Ni 5ÌÐÑ

0,67±0,033

100,00

 -

Sus scrofa L. + Ni 5ÌÐÑ

0,89±0,052

132,35

2,75

Capreolus capreolus L. + Ni 5 ÌÐÑ

0,72±0,026

108,12

1,03

Control:  Ni ÌÐÑ

1,20±0,080

100,00

 -

Sus scrofa L. +  Ni 10 ÌÐÑ

0,94±0,101

  78,23

1,58

Capreolus capreolus L. + Ni 10ÌÐÑ

1,08±0,026

  90,02

1,11

Ïðèì³òêà: äèâ. òàáëèöþ 1

Conclusions

Thus, we discovered the fact of the reduction in total activity of AST and concentrations of water-soluble protein fraction relative to control (the area without pollution of Ni and without excretory function of Mammalia) in leaves of Glechoma hederacea L., which dominated in the area under study, which was subject to considerably toxic concentrations of Ni, at doses of 1 MAC, 5 MAC, 10 MAC. The combined effect of the excretory function of Mammalia under the low and medium doses of nickel contributed to the increased activity of the enzyme and under the Ni at maximum concentration was reliably reduced compared with the control in the corresponding concentration factor. The concentration of water soluble protean fraction under the combined effect of the excretory function of Mammalia and Ni at maximum concentration was reliably reduced, because it was difficult for the system to operate the mechanisms of recovery and normalization function, while at low-and medium metal concentration the processes of protein metabolism increased. Thus, the use of individual elements of zoocoenosis in the system of nature conservation and improvement of the transformed ecosystems in the Steppe Dnieper region had positive results.

References

1.       Alexeev, J.V., 1987. Heavy metals in soil and plants [Tjazhelye metally v pochve i rastenijah]. Leningrad Nauka (in Russian).

2.       Becerril, F.R., Juárez-Vázquez, L.V., Hernández-Cervantes, S.C., Acevedo-Sandoval, O.A., Vela-Correa, G., Cruz-Chávez, E., Moreno-Espíndola, I.P., Esquivel-Herrera, A., de León-González, F., 2013. Impacts of manganese mining activity on the environment Interactions among soil, plants and arbuscular mycorrhiza. Environ. Contam. Toxicol. 64(2), 219227.

3.       Bernini, E.S., Carmo, T.M.S., Cuzzuol, do G.R.F., 2010. Spatial and temporal variation of the nutrients in the sediment and leaves of two Brazilian mangrove species and their role in the retention of environmental heavy metals. Braz. J. Plant Physiol. 22(3), 177187.

4.       B³lanich, M.M., 2008. The current state of research of influence of heavy metals on plant life [Suchasnij stan dosl³dzhennja vplivu vazhkih metal³v na roslinnij sv³t].  V³snik Prikarpats'kogo Nac³onal'nogo Un³versitetu. [Bulletin of the Carpathian national University) Ser³ja B³olog³ja, 12, 161176 (in Ukrainian).

5.       Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochemistry J. 72 248–254.

6.       Bulakhov, V.L., Pakhomov, Î.Å., 2006. Biological diversity of Ukraine. Dnipropetrovsk region.Mammals (Mammalia) [Biologichne riznomanittja Ukrai'ny. Dnipropetrovs'ka oblast'. Ssavci (Mammalia)]. Dnipropetrovs'k [Dnipropetrovsk University Press.] (in Ukrainian).

7.        Clemans S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212(4), 475–486.

8.       Dzyubak, O.I., Vasilyuk, O.M., 2009. Effect of chloride salinity on morphometric and biochemical indices in the dynamics of plant growth and development [Vplyv hlorydnogo zasolennja na morfometrychni ta biohimichni pokaznyky roslyn u dynamici rostu ta rozvytku]. Materialy I Mizhnarodnoi' Naukovoi' Konferencii' Studentiv, Aspirantiv ta Molodyh Uchenyh Fundamental'ni ta Prykladni Doslidzhennja v Biologii' [Materials of the International scientific conference of students and young scientists fundamental and applied research in biology], Donetsk, Veber 2, 231232 (in Ukrainian).

9.       Gallie, D.R., 2013. The role of l-ascorbic acid recycling in responding to Environmental stress and in promoting plant growth. Exp. Botany. 64(2), 433443.

10.   Gardea-Torresdey, J.L., Rosa, G. de la, Peralta-Videa, J.R., Montes, M., Cruz-Jimenez, G., Cano-Aguilera, I., 2005. Differential uptake and transport of trivalent and behexavalent chromium by tumbleweed (Salsola kali). Environ. Contam. Toxicol. 48(2), 225232.

11.   Hameed, A., Mahmooduzzafar, T.N.Q, Siddiqi, T.O., Iqbal, M., 2011. Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz. J. Plant Physiol. 23(1), 4654.

12.   Hasan, S.A., Hayat, S., Wani, A.S, Ahmad, A., 2011. Establishment of sensitive and resistant variety of tomato on the basis of photosynthesis and antioxidative enzymes in the presence of cobalt applied as shotgun approach. Braz. J. Plant Physiol. 23(3), 175185.

13.   Hébrard, C., Trap-Gentil, M.V., Lafon-Placette, C., Delaunay, A., Joseph, C., Lefèbvre, M., Barnes, S., Maury, S., 2013. Identification of differentially methylated regions during vernalization revealed a role for RNA methyltransferases in bolting. Exp. Botany. 64(2), 651663.

14.   Kulik, A.F., Vasilyuk, O.M., 2009. Catalase activity in soils of forest biocenosis in Samara Region [Aktyvnist' katalazy v g'runtah lisovyh biogeocenoziv Prysamarja]. Visn. Dnipropetr. Univ. Biol. Ecol. 17(2), 63–68 (in Ukrainian).

15.    Lefcort, Í., Wehner, E.A., Cocco, P.L., Lefcort, H., 2013. Look inside get aaccess pre-exposure to heavy metal pollution and the odor of predation decrease the ability of snails to avoid stressors. Environ. Contam. Toxicol. 64(2), Ð.273280.

16.   Martín, J.A.R., Carbonell, G., Nanos, N., Gutiérrez, S.C., 2013. Identification of soil mercury in the Spanish Islands. Environ. Contam. Toxicol. 64(1), 171–179.

17.   Millaleo, R., Reyes-Díaz, M., Alberdi, M., Ivanov, A.G., Krol, M., Hüner, N.P.A., 2013. Excess manganese differentially inhibits photo system I versus II in Arabidopsis thaliana L. Exp. Botany. 64(91), 343–354.

18.   Naji, K.M., Devaraj, V.R., 2011. Antioxidant and other biochemical defense responses of Macrotyloma uniflorum (Lam.) Verdc. (Horse gram) induced by high temperature and salt stress. Braz. J. Plant Physiol.  23(3), 187195.

19.   Pakhomov, O.Å., Vasilyuk, O.Ì., 2011. Activity of trans - amination enzymes as the indicator of biological revegetation of soils Mammalia in transformed ecosystems. The Abstracts NATO Advanced Research Workshop (ARW): Environmental security for South-East Europe and Ukraine, NATO science series book, Dnipropetrovs’k, 7475.

20.   Pakhomov, O.Å., Vasilyuk, O.M., 2012. The influence of anthropogenic factors on the activity of transferases in the background environment generating function of mammals [Vplyv antropogennyh faktoriv na aktyvnist' transferaz na foni seredovyshhetvirnoi' funkcii' ssavciv]. Visn. Dnipropetr. Univ. Biol. Ecol. 20(2), 64–70 (in Ukrainian).

21.   Pakhomov, O.E., Vasilyuk, O.M., 2013. Activity of transamination enzymes as the indicator of Environmental forming function of Mammalia representatives in transformed anthropogenic ecosystem. Nauk. Visn. Cherniv. Univ. Biol. (Biol. systems). 21(5), 54–61.

22.   Perfetto, B., Lamberti, M., Giuliano, M.T., 2006. Analysis of the signal transduction pathway of nickel-induced matrix metalloproteinase-2 expression in the human keratinocytes in vitro: preliminary findings. Cutaneous Pathology. 34(6), 441–447.

23.   Polevoy, V., Maximov, G. (eds.), 2008. Methods of analysis biochemically of plants, 2008. [Metody biohimicheskogo analiza rastenij]. Leningrad University Press (in Russian).

24.   Ruscitti, M., Arango, M., Ronco, M., Beltrano, J., 2011. Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.), Braz. J. Plant Physiol. 23(1), 1525.

25.   Shavrukov, Y. (2013). Salt stress or salt shock: which genes are we studying. J. Exp. Bot., 64(1), 119–127.

26.   Sun, J., Cui, J., Luo, C., Gao, L., Chen, Y., Shen, Z., 2013. Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties. Environ. Contam. Toxicol., 64(2), 243252.

27.   Varennes, A., Torres, M. O., Coutinho, J. F., Rocha, M.M.G.S., Neto, M.M.P. M., 1996. Effects of heavy metals on the growth and mineral composition of a nickel hyper accumulator. Plant Nutr. 19(5), 669676.

28.   Vasilyuk, O.M., Dzyubak, Î.²., 2009. Physiological and biochemical parameters of plants as markers of a condition of environment (Materials of the International scientific conference of students and young scientists fundamental and applied research in biology), Donetsk, Veber, 2, 348–349.

29.   Vasilyuk, O.M., Grycenko, P.V., 2008. Effect of growth regulators on the activity of transamination enzymes in the leaves and roots of Salix alba L. [Vplyv reguljatoriv rostu na aktyvnist' fermentiv pereaminuvannja v lysti ta korenjah Salix alba L.]. Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, Serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, Series: Biology. Ecology), 16(1), 34–40 (in Ukrainian).

30.   Vasilyuk, O.M., Kordin, O.I., 2005. Morphometric indices and yields of maize hybrids  as markers of plant adaptation. [Morfometrychni pokaznyky ta vrozhajnist' gibrydiv kukurudzy jak markery adaptacii' roslyn]  Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, Serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, Series: Biology. Ecology, 3-1, 13–18 (in Ukrainian).

31.   Vasilyuk, O.M., Kulik, A.F., 2008. Aspartate Aminotransferase activity in Zea Maize L. shoots under the cesium ions influence. Visnyk zapor³z'kogo nac³onal'nogo un³versitetu, (Bulletin of the Zaporizhzhya National University, 1, 238.

32.   Vasilyuk, O.M., Kulik, A.F., 2009. Invertase and urease activity in soils reclaimed areas of the Western Donbass. [Aktyvnist' invertazy ta ureazy v g'runtah rekul'tyvovanyh terytorij Zahidnogo Donbasu]. Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, Serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, Series: Biology. Ecology), 17(3), 1015 (in Ukrainian).

33.    Vasilyuk, Î.M., Kulik A.F., 2011. Transamination enzyme activity in leaves Sambucus nigro L. in high salinity [Aktyvnist' fermentiv pereaminuvannja v lystkah Sambucus nigro L. v umovah pidvyshhenoi' mineralizacii']. Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, Serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, Series: Biology. Ecology), 19(1), 1015 (in Ukrainian).

34.   Vasilyuk, O. Ì., Kulik, A. F., 2011. The trans-amimation enzyme activity in the leaves of Sambucus Nigra L. under high minaralization of small rivers of Steppe Dnieper The Abstracts NATO Advanced Research Workshop (ARW): Environmental security for South-East Europe and Ukraine, NATO science series book, Dnipropetrovs’k, 8485.

35.   Vasilyuk, O.M., Pakhomov, O.E., 2012. Effect of nickel ions on the functional activity of enzymes in the leaves of Glechoma hederatia L. in digging activity of Mammalia. [Vplyv ioniv nikelju na funkcional'nu aktyvnist' transaminaz v lystkah Glechoma hederatia L. v umovah ryjnoi' aktyvnosti Mammalia]. Materialy VI²I Mezhdunarodnoj nauchno-prakticheskoj konferencii Dostizhenija vysshej shkoly-2012. (Proceedings of the 8th international scientific and practical conference Investigation of high society schools-2012). Bjal GRAD-BG, Sofija, Bolgarija, 1, 25–32 (in Ukrainian).

36.   Vasilyuk, O.M., Vinn³chenko, O.M., 2006. Effect of biologically active substances on the activity of catalase different genotypes of corn on a background of atsenitu. [Vplyv biologichno aktyvnyh rechovyn na aktyvnist' katalazy kukurudzy riznyh genotypiv na foni dii' acenitu]. Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, Serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, series: Biology. Ecology 3/1, 2630 (in Ukrainian).

37.   Vestena, S., Cambraia, J., Ribeiro, C., Oliveira, J.A, Oliva, M.A., 2011. Cadmium induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz. J. Plant Physiol. 23(2), 131–139.

38.  Vinn³chenko, O.M., Vasilyuk, O.M., 2006. Effect of biologically active substances on the activity of catalase in different genotypes kulturfitotsenozah corn on a background of herbicides. [Vplyv biologichno aktyvnyh rechovyn na aktyvnist' katalazy v kul'turfitocenozah riznyh genotypiv kukurudzy na foni dii' gerbicydiv]. Visnyk Dnipropetrovs'kogo Nacional'nogo universytetu, serija: Biologija. Ekologija. (Bulletin of the Dnipropetrovsk National University, series: Biology. Ecology, 3, 38–43 (in Ukrainian).