Автор: Hajiyev Rufat Akif

Место работы: Azerbaijan republic compony Socar, Azneft İB, 28 May NQCI

название тезиса: Structural geology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformationalhistories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the regional geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation (e.g., mountain building, rifting) due to plate tectonics.

The study of geologic structures has been of prime importance in economic geology, both petroleum geology and mining geology.Folded and faulted rock strata commonly form traps for the accumulation and concentration of fluids such as petroleum and natural gas. Faulted and structurally complex areas are notable as permeable zones for hydrothermal fluids and the resulting concentration areas for base and precious metal ore deposits. Veins of minerals containing various metals commonly occupy faults and fractures in structurally complex areas. These structurally fractured and faulted zones often occur in association with intrusive igneous rocks. They often also occur around geologic reef complexes and collapse features such as ancient sinkholes. Deposits ofgold, silver, copper, lead, zinc, and other metals, are commonly located in structurally complex areas.

Structural geology is a critical part of engineering geology, which is concerned with the physical and mechanical properties of natural rocks. Structural fabrics and defects such as faults, folds, foliations and joints are internal weaknesses of rocks which may affect the stability of human engineered structures such as dams, road cuts, open pit mines and underground mines or road tunnels.

Geotechnical risk, including earthquake risk can only be investigated by inspecting a combination of structural geology and geomorphology.In addition areas ofkarst landscapes which are underlain by underground caverns and potential sinkholes or collapse features are of importance for these scientists. In addition, areas of steep slopes are potential collapse or landslide hazards.

Environmental geologists and hydrogeologists or hydrologists need to understand structural geology because structures are sites of groundwater flow and penetration, which may affect, for instance, seepage of toxic substances from waste dumps, or seepage of salty water into aquifers.

Plate tectonics is a theory developed during the 1960s which describes the movement of continents by way of the separation and collision of crustal plates. It is in a sense structural geology on a planet scale, and is used throughout structural geology as a framework to analyze and understand global, regional, and local scale features

Methods

Structural geologists use a variety of methods to (first) measure rock geometries, (second) reconstruct their deformational histories, and (third) calculate the stress field that resulted in that deformation.

Geometries

Primary data sets for structural geology are collected in the field. Structural geologists measure a variety of planar features (bedding planes, foliation planes, fold axial planes, fault planes, and joints), and linear features (stretching lineations, in which minerals are ductily extended; fold axes; and intersection lineations, the trace of a planar feature on another planar surface).

Measurement conventions

The inclination of a planar structure in geology is measured by strike and dip. The strike is the line of intersection between the planar feature and a horizontal plane, taken according to the right hand convention, and the dip is the magnitude of the inclination, below horizontal, at right angles to strike. For example; striking 25 degrees East of North, dipping 45 degrees Southeast, recorded as N25E,45SE.
Alternatively, dip and dip direction may be used as this is absolute. Dip direction is measured in 360 degrees, generally clockwise from North. For example, a dip of 45 degrees towards 115 degrees azimuth, recorded as 45/115. Note that this is the same as above.

The term hade is occasionally used and is the deviation of a plane from vertical i.e. (90°-dip).

Fold axis plunge is measured in dip and dip direction (strictly, plunge and azimuth of plunge). The orientation of a fold axial plane is measured in strike and dip or dip and dip direction.

Lineations are measured in terms of dip and dip direction, if possible. Often lineations occur expressed on a planar surface and can be difficult to measure directly. In this case, the lineation may be measured from the horizontal as a rake or pitch upon the surface.

Rake is measured by placing a protractor flat on the planar surface, with the flat edge horizontal and measuring the angle of the lineation clockwise from horizontal. The orientation of the lineation can then be calculated from the rake and strike-dip information of the plane it was measured from, using astereographic projection.

If a fault has lineations formed by movement on the plane, e.g.; slickensides, this is recorded as a lineation, with a rake, and annotated as to the indication of throw on the fault.

Generally it is easier to record strike and dip information of planar structures in dip/dip direction format as this will match all the other structural information you may be recording about folds, lineations, etc., although there is an advantage to using different formats that discriminate between planar and linear data.

Plane, fabric, fold and deformation conventions

The convention for analysing structural geology is to identify the planar structures, often called planar fabrics because this implies a textural formation, the linear structures and, from analysis of these, unravel deformations.

Planar structures are named according to their order of formation, with original sedimentary layering the lowest at S0. Often it is impossible to identify S0 in highly deformed rocks, so numbering may be started at an arbitrary number or given a letter (SA, for instance). In cases where there is a bedding-plane foliation caused by burial metamorphism or diagenesis this may be enumerated as S0a.

If there are folds, these are numbered as F1, F2, etc. Generally the axial plane foliation or cleavage of a fold is created during folding, and the number convention should match. For example, an F2 fold should have an S2 axial foliation.

Deformations are numbered according to their order of formation with the letter D denoting a deformation event. For example, D1, D2, D3. Folds and foliations, because they are formed by deformation events, should correlate with these events. For example, an F2 fold, with an S2 axial plane foliation would be the result of a D2 deformation.

Metamorphic events may span multiple deformations. Sometimes it is useful to identify them similarly to the structural features for which they are responsible, e.g.; M2. This may be possible by observing porphyroblast formation in cleavages of known deformation age, by identifying metamorphic mineral assemblages created by different events, or via geochronology.

Intersection lineations in rocks, as they are the product of the intersection of two planar structures, are named according to the two planar structures from which they are formed. For instance, the intersection lineation of a S1 cleavage and bedding is the L1-0 intersection lineation (also known as the cleavage-bedding lineation).

Stretching lineations may be difficult to quantify, especially in highly stretched ductile rocks where minimal foliation information is preserved. Where possible, when correlated with deformations (as few are formed in folds, and many are not strictly associated with planar foliations), they may be identified similar to planar surfaces and folds, e.g.; L1, L2. For convenience some geologists prefer to annotate them with a subscript S, for example Ls1 to differentiate them from intersection lineations, though this is generally redundant.