B.Sazambayeva, G. Kuanyshev, M.Zhumanov, S. Kozhataev

 

Kasakh National Research Technical University Behalf K.Satpayev,Almaty,22 Satpayev street

 

DETERMINATION OF TORQUES ON THE TUBULAR BELT CONVEYOR

1.     Method calculating of tubular belt conveyor

In operation, when the design parameters of a tubular belt conveyor reach a certain value (critical value), begins intensive growth of oscillation amplitudes. In this case, the operation of the conveyor is not possible due to intense vibration. Vibration breakages in the loss of stability is usually accompanied by costly repairs, significant unplanned downtime and sometimes devastating consequences. Used in work approach makes it relatively easy to analyze the vibration resistance of pipelines and assess their critical parameters. Knowledge of these parameters allows you to design quickly and produce tubular belt conveyors with low vibration and high operational reliability.

2. Perturbed motion of a tubular belt conveyor Introduction

Consider the straight portion of the tubular belt conveyor (Figure 1)

[1,2,3,4,5]

Fig. 1. Finite element model of the linear portion of the tubular conveyor belt.

Consider the straight portion of the tubular belt conveyor as a set of five finite elements with six nodes (Figure 1). Formation of the global matrix of inertia, stiffness, damping and vector nodal loads described in [1,2]. Let us write the equation of forced torsional oscillations of a straight section of the conveyor belt tube (Figure 1) in the form of [6,7,8,9,10]:

                                     (1)

with the initial conditions

                                                                      (2)

 

         Here ,, respectively global matrix of inertia, damping and stiffness,  global vector of external forces. The matrices of inertia, stiffness and the nodal displacements vector of finite element model of the tubular belt conveyor have the form [1,2]:

In practical calculations  damping matrix for each  finite element is represented as a linear combination

                                                                  (3)

Where proportionality coefficients. For example, when  damping matrix is proportional to the matrix of inertia ("external" friction), when   damping matrix is proportional to the stiffness matrix ("internal" friction).

To determine the equivalent nodal torsional moments , arising from the interaction of the tape of the tubular conveyor with support idlers, consider the tape movement inside the idlers. Idlers are the six rollers [8,14,15],,
forming a ring. Thus, the three upper and three lower rollers rotating in opposite directions Fig.2.         

 

Fig. 2. The forces acting on the tape in idler

Due [5,7,8,11,13] 

Where  pressure force on the i-th roller,  torsional shear angle. The rotating moment at the point of contact of tape and i-th roller is calculated as:

                                                                              (4)

Thus, the total torque with (4) is equal to

Then the vector of nodal loads to the m-th finite element, taking into account (4) has view [2,3]

      (5)

Consequently, the vector of equivalent nodal loads  of concentrated torques in idlers will be equal to:

Thus, the equation of perturbed motion of torsional oscillations of the straight section of the belt tube conveyor (Figure 1) has the form

 

(6)

 

It is assumed that the damping matrix is proportional to the matrix of inertia. Thus, the coefficient of proportionality .

Since oscillation stability is determined by reacting the first lower waveforms in equation (6) as a first approximation may be considered not all waveforms  but only .

In this case, the solution of equation (6) in the form

                            ,                                                                    (7)

Where  . Здесь    diagonal matrix of squares of the natural frequencies, identity matrix of dimension (),matrix of natural modes of dimension ().

         Inserting (7) into (6) and cancel out the common multiplier  we obtain the equation

                                           (8)

The characteristic equation for determining the indicator  takes the form

                                                             (9)

         Here  the matrix with dimension ().

         When you change parameter  the characteristic indices  move in the complex plane (Fig. 3). The real roots of the equation (9) corresponds to a monotonous (not oscillating) movements of the straight section of the belt tubular conveyor and complex - the oscillatory motion. Thus particular solution will be attenuated, periodical or infinitely increasing function of time depending on whether the real part of the root (9) is negative (Fig. 3a), is zero (Fig. 3b) or positive (Fig. 3c).

Figure 3. Location roots of the equation (4) in the complex plane,
   typical trajectories and phase portraits.

In the field of sustainability  On the part of the critical surface, which corresponds to the transition to the divergence, one of the characteristic roots of the equation (9) vanishes. On the critical surface, which corresponds to a transition to flutter at least a pair of roots is a complex conjugate (Fig. 3).

 

2. The solution of test task

To illustrate the practice of the developed approach, consider the straight portion of the tubular belt conveyor (Figure 1) for the following parameters:  the length of the linear portion of the conveyor; Нм - the resulting torque in idlers; м - the distance between the idlers; м - the mean radius of the circumference of the pipe; м - tape thickness; Pa - shear modulus;  angle characterizing the degree of filling the cross section of the tape by load;

 the density of coal; the density of tape;  reduced density;  the moment of inertia of rotation of the tube;  moment of inertia of the load rotation;   linear mass moment of inertia;  torsional stiffness section; m/s - the conveyor belt speed.

         Figure 4 shows the dependence of the first two lower frequency torsional vibrations, and the real part of the characteristic exponent  of the tubular conveyor belt (Figure 1) as a function of the speed of the belt  on the conveyor. The solid and dashed lines correspond to the first and second natural frequency of the torsional oscillations, respectively. From Figure 4 it is seen that with increasing the speed of the conveyor belt lower natural frequencies decrease and when  , which corresponds to the transition to unstable torsional vibrations according to the type of divergence.

         Thus, the critical speed of the conveyor belt as is equal  

When  torsional oscillations of the straight section of the belt tubular conveyor are sustainable.

3.     The main results and conclusions

 

The proposed approach is based on the finite element method, makes it relatively easy to assess critical parameters of tubular belt conveyors. It is shown that the critical speed of movement of conveyor belt is equal

References:

1.Дмитриев В.Г., Сергеева Н.В. Определение распределенных сопротивлений движению ленты на прямолинейных участках трассы ленточного трубчатого конвейера // Горный информационно-аналитический бюллетень. - 2008. - №9. - С. 245 - 249.

2. Sarguzhin M.Kh., Dzhienkulov Z.S., Sazambaeva B.T., Imangaliyeva A.E.

Determination of resistance to movement of the running belt circuit of conveyor syste//      Materiály X mezinárodní vědecko-praktická conference. «Efektivní nástroje moderních věd – 2014»,  Díl 32. Technické vědy

3. Пертен Ю.А. Крутонаклонные конвейеры. Л:Машиностроение, 1977.-с.215.

4.                 Дмитриев В.Г., Ефимов М.С. Влияние различных факторов на угловые отклонения ленты трубчатого конвейера. // Горный информационно-аналитический бюллетень. – М.: МГГУ, 2008. - №8, с. 235 - 237.

5.                 B. Sazambaeva , G. Kuanyshev,  Khadeev ,N.T.Zhumanov“On the question of the study   of tubular belt conveyors for the transportation of goods environmentally //Materias of XI International Research and Praktike Conference SCINCE WITHOUT BORDERS-2015, March-April 7, 2015 / Science and Education Ltd Sheffied S.60-66

6.                 V.Radian, J.Samarin, V. Chirkov “Finite Element Method for dynamic
problems of strength of materials.” - M.: FIZMATLIT, 2013. - 316 p.

7.                  Дьяченко А.В. Обоснование метода расчета напряженного состояния сыпучего груза и нагрузок на опорные элементы при формировании желоба трубчатого ленточного конвейера. дис. на соискание уч. ст. канд. техн. наук. Московский государственный горный университет. М. 2006

8.                  Сазамбаева Б.Т., Кәдірақын. Г Исследование параметров трубчатого ленточного конвейера // Вестник КазНТУ №5.- Алматы, 2015С.104-106

9.                 Модернизация Красноярского цементного завода – сайт: www. http://www.sibcem.ru/ 

10. В.Н.Ивченко, С.В.Куров, Беспросыпные ленточные конвейеры. Журнал "Горная Промышленность" №4 2005.

11. В.Г. Дмитриев, Н.В. Сергеева Методика тягового расчета ленточного  трубчатого конвейера Журнал "Горная Промышленность" №4 2011

12. Шахмейстер Л.Г., Дмитриев В.Г. Теория и расчет ленточных конвейеров. М.: Машиностроение, 1987. - 336 с.

13. Сергеева Н.В. Обоснование метода расчета распределенных сил сопротивления движению ленты на линейной части трубчатого конвейера для горных предприятий.  Автореф. дисс. на соиск. уч. степени канд. техн. наук., Москва, МГГУ, 2000 -24 с.  

14. П.А. Бажанов Методы оптимизации параметров  трубчатого ленточного конвейера Горный информационно-аналитический бюллетень, 2009, №9,

15.Куанышев Г.И. Патент KZ № 29011 Трубчатый ленточный конвейер. Республика Казахстан, Астана, 2014г.