Матысина З.А., Елина Е.В., Боцьва Н.П., Шевченко В.С.
В широких
экспериментальных и теоретических исследованиях физико-химических и
термодинамических свойств фторфуллеренов Ф1=C60F48, Ф2=C60F36 и им подобных, проводимых в
последние годы, изучается, в частности, их структура, фазовые превращения и теплоемкость
[1-3].
Экспериментальное исследование темплоемкости СР фторфуллерена Ф1 выявило аномалию в ее температурной зависимости: в области температур Т0 ~ 330 К на кривой СР(Т) появляется пик [2]. Определение кристаллической и молекулярной структуры конденсата показало, что при этой температуре происходит фазовый переход типа порядок–беспорядок. Структура фторфуллерита изменяется от упорядоченной объемноцентрированной тетрагональной (ОЦТ) в неупорядоченную гранецентрированную кубическую (ГЦК) [1,3]. При этой же температуре наблюдается аномальное изменение параметра решетки [3], по-видимому, обусловленное реализацией фазового перехода.
Представляет
интерес теоретическое исследование фторфуллеренов, разработка статистической
теории фазового перехода при температуре Т0, построение диаграммы состояния системы, выяснение
температурной зависимости теплоемкости фторфуллерита, объяснение и обоснование
появления возможной аномалии в этой зависимости при температуре Т0.
Для решения поставленной задачи рассчитывалась свободная
энергия конденсата. В теоретических расчетах рассматривалась смесь
фторфуллеренов Ф1, Ф2, которая, согласно
экспериментальным данным, ниже температуры Т0 обладает
упорядоченной ОЦТ кристаллической решеткой, а выше температуры Т0 –
неупорядоченной ГЦК решеткой. В расчетах использовался метод средних энергий [4],
приближение учета энергий взаимодействия ближайших фторфуллереновых пар и
модель сферически симметричных жестких шаров [4,5].
Расчет свободных энергий ОЦТ и ГЦК фаз проводился с
использованием известной формулы
, где i = 1, 2 для ОЦТ и ГЦК фаз, Ei – внутренняя конфигурационная энергия, равная
сумме энергий парного взаимодействия ближайших фторфуллеренов, Gi – термодинамическая
вероятность, определяемая количеством различимых распределений фторфуллереновых
молекул по всем их позициям, k–
постоянная Больцмана, T– абсолютная температура [6].
Вычисление
свободных энергий в расчете на один узел кристаллической решетки и в приближении
квадратичной зависимости энергии упорядочения ОЦТ фазы от параметра порядка
дало такие результаты:
, (1)
, (2)
где N –
число всех узлов (фторфуллеренов) кристалла, η – параметр порядка в
распределении фторфуллеренов Ф1, Ф2 по
узлам ОЦТ решетки, е1, е2 – слагаемые свободных
энергий, не зависящие от параметра порядка, ω1 – постоянное слагаемое
энергии упорядочения ОЦТ фазы,
![]()
, (3)
, (4)
с1, с2 – концентрации
фторфуллеренов Ф1, Ф2.
Формулы (1) – (4)
определяют зависимость свободных энергий f1, f2 от температуры Т,
состава фаз (концентраций с1, с2),
параметра порядка η и энергетических констант е1, е2,
ω1.
Фазовое
превращение ОЦТ→ГЦК происходит при температуре Т = Т0
(фазовый переход первого рода), когда свободные энергии обеих фаз равны f1 = f2.
Равновесное значение параметра порядка зависит от температуры, концентраций с1, с2 и константы α.
Для ОЦТ фазы стехиометрического состава уравнение термодинамического равновесия приобретает вид
. (5)
На рисунке приведена диаграмма состояния системы, построенная с использованием как метода общих касательных к кривым f1(c1), f2(c1), так и по точкам пересечения этих кривых.
kT, эВ

ГЦК
ОЦТ+
ОЦТ ГЦК
c1
построенная
по методу общих касательных кривых свободных энергий
f1(c1), f2(c1) фаз ОЦТ и
ГЦК (сплошные кривые) и по точкам пересечения
этих
кривых (пунктирная кривая), построенных для разных температур
Видно, что при
низких температурах из смеси фторфуллеренов Ф1, Ф2
должна реализовываться в соответствии с экспериментальными данными упорядоченная
ОЦТ фаза. С повышением температуры происходит фазовый переход в неупорядоченное
состояние смеси Ф1, Ф2 с ГЦК решеткой, что
также соответствует экспериментальным данным. С ростом температуры расширяется
концентрационный интервал формирования ГЦК фазы, и при достаточно высоких
температурах почти во всем концентрационном интервале реализуется ГЦК фаза.
Существование ОЦТ фазы сохраняется и при достаточно высоких температурах, но
для малых или больших концентраций фторфуллеренов Ф1, Ф2.
В области вблизи стехиометрического состава реализуется ГЦК фаза в широком
температурном интервале, начиная от kT0 0.04 эВ. Двухфазные области
формирования ОЦТ и ГЦК фаз начинают проявляться при kT0 ≈ 0.005 эВ для системы
стехиометрического состава, которые далее расширяются с повышением температуры
до kT ≈ 0.02 эВ. Дальнейшее повышение температуры смещает
двухфазные области смеси ОЦТ+ГКЦ фаз в сторону увеличения и уменьшения концентрации
с1, и эти области сужаются.
Разработанная статистическая теория позволила обосновать и объяснить фазовый переход типа порядок–беспорядок в смеси фторфуллеренов Ф1=C60F48, Ф2=C60F36, наблюдаемый экспериментально при температуре 330К, когда реализуется переход из упорядоченной ОЦТ фазы в неупорядоченную ГЦК фазу.
Литература
1.
Crystal structures of the
fluorinated fullerenes C60F36 and C60F48 / S. Kawasaki, T.Aketa, H.Touhara,
F.Okino, O.V.Boltalina, I.V.Gol'dt, S.I.Troyanov, R.Taylor // J. Phys. Chem. B.
– 1999. – V.103(8). – P.1223-1225.
2.
The low temperature heat
capacities of fluorofullerenes / A.I. Druzhinina, N.A.Galeva, R.M.Varushchenko,
O.V.Boltalina, L.N.Sidorov // J. Chem. Thermod. – 1999. – V.31(11). –
P.1469-1482.
3.
Kawasaki S. Crystal structures
and phase transformations of the fluorinated fullerenes / S. Kawasaki, F.Okino,
H.Touhara // Mol. Cryst. Liq. Cryst. – 2000. – V. 340. - P.629-633.
4.
Матысина З.А. Порядки различного типа в кристаллах и
фазовые превращения в углеродных материалах / З.А.Матысина, С.Ю.Загинайченко,
Д.В.Щур. – Днепропетровск: Наука и образование, 2005. – 524 с.
5.
Матысина З.А. Углеродные наноматериалы и фазовые превращения в них
/ З.А.Матысина, С.Ю.Загинайченко, Д.В.Щур. – Днепропетровск: Наука и образование,
2007. – 680 с.
6.
Смирнов А. А.
Молекулярно-кинетическая теория металлов – М., 1966. – 488 с.