Химия и химические
технологии / 4. Химико-фармацевтическое производство
C.pharm.sci. Borschevskiy G. I.1, c.phys-math.sci.
Yanchuk I. B.1,
d.pharm.sci. Yarnykh T. G.2
1 JSC “Farmak”, Kiev
2 National University of Pharmacy
Investigation of the chemical and
structural properties of the liposome medicines obtained from various lipids
Obtaining
and experimental study of liposomes is one of the priority areas of
nanobiotechnology. It is known that liposomal membranes from phospholipids are
prone to hydrolysis due to the ester bond.
When
creating liposomal drugs are used substances LIPOID S 100 and LIPOID E 80. The
main difference of these substances is a quantitative content of phosphatidylcholine
(~ 93 % in S100, and ~ 85 % in E80).
The
difference in the quantitative composition of the obtained liposomal medicines
determines the ability to penetrate cell membranes and, accordingly, alters
pharmacokinetics of the medicine [2, p. 7-12; 3, p. 22-31; 4, p. 18-29].
We
investigated the chemical stability (phospholipids composition and the peroxide
value), the structure and size of the liposomes obtained from lipoids of different
nature.
Liposomes
were prepared by high pressure via a high pressure homogenizer. The study of phospholipids
composition of the liposomes was carried out by TLC.
Determination of peroxide value was carried
out by the method of State Pharmacopoeia of Ukraine [1, p. 226-231].
Liposomes
size was determined by the method of dynamic light scattering (DLS) and
transmission electron microscopy (TEM).
Obtained
data confirmed that substances which were used are highly purified and
minimally oxidized for double bonds in fatty acids.
By TLC
was determined phospholipids composition of medicines [5, p. 15-23; 7, p. 5-7].
The
results showed that in the composition of the liposomes there are phosphatidylcholine,
diphosphatidylglycerol, phosphatidylethanolamine, sphingomyelin. The amount of
lysophosphatidylcholine in different samples varied from 1.33 % to 1.61 % (the
content of phosphatidylcholine), which indicates the stability of phosphatidylcholine
in the process of obtaining liposomes.
The
results of determination of the peroxide number showed that the peroxide number
in prototypes (value 0) does not exceed the value given in the certificates. The
index of lipid liposome oxidization during the technological process did not
change comparing with baseline lipid mixture.
The
structure and size of the received medicines were confirmed by TEM and DLS
spectrum. Liposomes have a shape close to spherical, average size is 42-44 nm. Liposome
sizes, determined by DLS are slightly greater (5-7 %) of liposome sizes determined
by TEM.
This
discrepancy is typical and due to the fact that when using the DLS measured
hydrodynamic radius of the particles which is always greater than the real. The
size of liposomes produced from various raw materials is virtually identical.
Thus,
analytical methods that are specific for the study of physical and chemical
properties of the liposomes are determined. These methods include thin-layer
chromatography, dynamic light scattering, electron microscopy, determination of
the index of lipid peroxidation and the peroxide number [6, p. 5-11].
These
methods allow identifying and evaluating the critical parameters of technology
of liposomal medicines.
TLC,
determination of the index of lipid peroxidation and the peroxide number allows
quantifying the content of impurities in the production process and storage of medicines.
DLS and
TEM techniques allow visualizing the process of obtaining liposomal medicines
and judge the physical processes occurring in the formation of liposomes.
References:
1.
Державна
фармакопея України / Держ. п-во «Науково-експертний фармакопейний центр». – 1-е
вид. – Х. : РІРЕГ, 2001. – 556 с.
2.
Дикий І. Л. Обґрунтування
деяких конструктивних, технологічних та фармакологічних характеристик ліпосом
та ліпосомальних лікарських форм / І. Л. Дикий, Л. С. Стрельников, І. М. Перцев
// Фармац. вісник. –2003. – № 1-2. – C. 7-12.
3.
Дудниченко А. С. Липосомальные
лекарственные препараты в эксперименте и клинике / А. С. Дудниченко, Ю. М. Краснопольский,
В. И. Швец // Харьков: РА-Каравелла. – 2001.
4.
Краснопольский Ю. М. Технологические
аспекты получения липосомальных препаратов в условиях GMP. / Ю. М. Краснопольский,
А. Е. Степанов, В. И. Швец // Биофармацевтический журнал. – 2009. – Том. 1, №
3. – С. 18-29.
5. Розробка методики кількісного
визначення діючих речовин ліпосомального спрея для зовнішнього застосування
Єфіаль / Г. І. Борщевський, Т. Г. Ярних, В. Н. Чабанний // Управління,
економіка та забезпечення якості в фармації. – 2014. – № 6 (38). – С. 15-23.
6. Стандартизация липосомальных
лекарственных средств/ Г. И. Борщевский, Е. К. Товмасян, Ю. М. Краснопольский,
А. И. Гризодуб // Фармаком. – 2013. – №
2 – С. 5-11.
7.Физико-химическое обоснование способа получения многокомпонентного
липосомального препарата / Г. И. Борщевский, Т. Г. Ярных // Вісник Фармації. – 2013.
– № 3 (75). – С. 5-7.