Математика/5. Математическое моделирование
Baimankulov A.
Kostanay State
University named after A.Baitursynov,
Kazakhstan.
Limitation of coefficient
of diffusion
Earlier
we received a recurrence relation of calculation of coefficient of diffusion
.
(1)
We will
prove limitation
using aprioristic estimates of the solution of a
straight line and interfaced tasks.
From
equality
, after summation
on
the ratio follows
.
From here
![]()
. (2)
Sum up
on
from the any
to
and taking into account boundary conditions we
have equality
.
We estimate from
above this size, that is
.
If
, that on the basis
of earlier received estimates
. (3)
Using the similar
scheme for the interfaced task, we’ll get
.
Sum up on
, then taking into
account aprioristic estimates we have an inequality
(4)
From (2) on a basis (3) и (4), after some transformations the inequality is
removed
.
Function
is selected so
,
.
In this case we
receive that
.
Function
is selected so that the inequality took
place
.
Then performance of
the following inequality doesn't raise doubts
,
.
References
1.Нерпин С.В., Юзефович Г.И. О расчете
нестационарного движения влаги в почве// Доклады ВАСХНИЛ, № 6, 1966.
2.Юзефович Г.И., Янгарбер В.А.
Исследование нелинейного уравнения влагопереноса. // Л.: Колос. Сб. трудов по
агрофизике, вып. № 14, 1967.
3.Байманкулов, А.Т.
Конечно-разностная аппроксимация прямой и сопряженной задач [Текст] /
Байманкулов А.Т., Махамбетова Г.И. // Materialy IX miedzynarodowej naukowi-praktycznej
konferencji «Europejska nauka XXI powieka-2013» Volume 27. Matematyka. Fizyka.
Budownictwo i architektura.: Przemysl. Nauka i studia - C.22-23.