Ìàòåìàòèêà/5. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
Baimankulov A.
Kostanay State
University named after A.Baitursynov,
Kazakhstan.
Stability of the solution of the differencial problem
Consider the perturbed problem
![]()
![]()
If we
introduce the designations for the difference
,
get the equation
(1)
, (2)
ãäå
=![]()
perturbation of the initial condition
, ![]()
.
Multiplying
(1) on
and summing over
and
get
.
For the
last term we use the formula of summation by parts
.
Applying
Cauchy-Bunyakovskii formula, we get
.
Arguing
as in previous works, we conclude that
.
Substituting
and applying the Gronwall lemma (differencial analogue) we obtain the estimate:
.
The
last inequality indicates the stability of the solution of the differencial
problem (1)-(2) given in [3].
That
is, a small change in the flow of moisture
and the initial distribution of
moisture
causes a small change in the
solution of the differencial problem (1)-(2) given in [3].
References
1.Òèõîíîâ À.Í., Ñàìàðñêèé À.À. Óðàâíåíèÿ
ìàòåìàòè÷åñêîé ôèçèêè. – Ì.: Íàóêà, 1996, 724 ñ.
2.Ðûñáàéóëû Á.
Èäåíòèôèêàöèÿ êîýôôèöèåíòà ïðîíèöàåìîñòè ïëàñòà ïðè óïðóãîì ðåæèìå äîáû÷è
íåôòè// Âåñòíèê ÊÁÒÓ, 2008 ã., ¹2(5), ñ. 46-51.
3.Áàéìàíêóëîâ À.Ò. Êîíå÷íî-ðàçíîñòíàÿ
àïïðîêñèìàöèÿ ïðÿìîé è ñîïðÿæåííîé çàäà÷ // Materialy IX miedzynarodowej
naukowi-praktycznej konferencji «Europejska nauka XXI powieka-2013» Volume 27.
Matematyka. Fizyka. Budownictwo i architektura.: Przemysl. Nauka i studia -
C.22-23.