Ìàòåìàòèêà/5. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå

 

Baimankulov A.

Kostanay State University named after A.Baitursynov,  Kazakhstan.

 

Stability of the solution of the differencial problem

 

Consider the perturbed problem

 

 

If we introduce the designations for the difference

,

get the equation

                                                             (1)

                                                                                                                               

,                               (2)                                                                                                                               

ãäå = perturbation of the initial condition , .

Multiplying (1) on    and summing over  and  get

 

.

 

For the last term we use the formula of summation by parts

 

.

 

Applying Cauchy-Bunyakovskii formula, we get

 

.

Arguing as in previous works, we conclude that

 

.

 

Substituting and applying the Gronwall lemma (differencial analogue) we obtain the estimate:

 

.

 

The last inequality indicates the stability of the solution of the differencial problem (1)-(2) given in [3].

That is, a small change in the flow of moisture   and the initial distribution of moisture  causes a small change in the solution of the differencial problem (1)-(2) given in [3].

 

References

1.Òèõîíîâ À.Í., Ñàìàðñêèé À.À. Óðàâíåíèÿ ìàòåìàòè÷åñêîé ôèçèêè. – Ì.: Íàóêà, 1996, 724 ñ.

2.Ðûñáàéóëû Á. Èäåíòèôèêàöèÿ êîýôôèöèåíòà ïðîíèöàåìîñòè ïëàñòà ïðè óïðóãîì ðåæèìå äîáû÷è íåôòè// Âåñòíèê ÊÁÒÓ, 2008 ã., ¹2(5), ñ. 46-51.

3.Áàéìàíêóëîâ À.Ò. Êîíå÷íî-ðàçíîñòíàÿ àïïðîêñèìàöèÿ ïðÿìîé è ñîïðÿæåííîé çàäà÷ // Materialy IX miedzynarodowej naukowi-praktycznej konferencji «Europejska nauka XXI powieka-2013» Volume 27. Matematyka. Fizyka. Budownictwo i architektura.: Przemysl. Nauka i studia - C.22-23.