Ìàòåìàòèêà/1.Äèôôåðåíöèàëüíûå
è èíòåãðàëüíûå óðàâíåíèÿ
Abdrakhmanova G.M.
Karaganda economic
university of Kazpotrebsouz, Kazakhstan
On Jackson- Nikolskii inequalities
in spaces with asymmetric weights Lebesgue
A.A.Markov
In 1889, the famous chemist Mendeleev module works at the request of algebraic
polynomial algebraic polynomial module assessment proved inequality. In 1951 he
inequality for trigonometric polynomial and space (pand q) proved different when S.M. Nikolskii.
Theorema1 (JACKSON- NIKOLSKII INEQUALITIES) Let
and
is
trigonometric polynomials of degree n.
Then we have
![]()
Definition
1 Let
, and for
periodically metric function
the following integral
,
now
it lies on the spaceand
is Weights Lebesgue space/
Let
(
) be the
space of p power Lebesgueintegrable functions f on
equipped with the norm

Definition
2 Let
and let
be
arbitrary numbers
. The
following
(1)
the set of
allffunctions is called asymmetric
weights Lebesgue space. Denote by
. In this
paper the following lemms considered.
Lemma 1 Let
and let
be arbitrary numbers
. The
asymmetric
weights Lebesgue norm satisfies the conditions:
1.
almost everywhere in
;
2.
![]()
3.
![]()
For any
positive integer n, let
denote the collection of all trigonometric
polynomials of degree n, i.e.,
means that
![]()
where
is factor trigonometric polynomial.
Set
the
following lemma is valid.
Lemma 4 Let
and
.The
following estimates hold:
a) If
, then
(2)
b)
If
, then
(3)
Proof Let the maximum will be at point
.
,
valid for
any ![]()
![]()
![]()
Therefore

Enough to
bring it on inequality.To do this, we use the integral properties

If
so, then the perfomed
(3) inequality. If
, then
.
, 
Here will the following inequality
.
If
, then
,
.
If
, then,
.
Here will the following inequality
,
.
Therefore
.
Set
. Then
has zerosand
. Let be
the smallest positive zero of the
function
. We have ![]()
Lemma 1 shows that
![]()
Therefore
![]()
It is enough to convert, to inequality.To do this, we use the properties
of the integral.

If
, then we
have inequality (4).If
, then
.
,
.
Consequently
.
If
, then
. Therefore
![]()
If
, then
![]()
Therefore
![]()
The proof is complete.
Affirmation 1 Let
be
arbitrary numbers from
. Then we
have
(4)
Proof It suffices to prove the following inequality.
(5)
If
, then
.
If
,
then
![]()
The assertion is proved.
Theorem 2 Let
n be a natural number,
and let
be arbitrary numbers from (1,∞]. Then we
have
![]()
Here
.
Proof We considered separately two cases.
(a)
If
, then it
follows from lemma 2 that
(6)
Under the terms
. Therefore
(7)
If
, then
. Therefore
(8)
(6)-(8)of
inequalities
(9)
If
,
, then
(10)
(b)
If
, then it
follows from lemma 4 that
(11)
Under the terms
. Therefore
.
Of these inequalities
.
According to the formula
.
(12)
Under the terms
of the
theorem
(13)
If
, then
. Therefore
(14)
(12)-(13)of
inequalities
(15)
(6)-(15)of
inequalities, for ![]()
,
we have
.
References
1.
Áàðè Í.Ê. «Îáîáùåíèå íåðàâåíñòâ Ñ.Í.Áåðíøòåéíà è
À.À.Ìàðêîâà»//
Èçâ. ÀÍ ÑÑÑÐ. Ñåð. ìàòåì., 1954, òîì 18, âûïóñê 2, 159–176
2. Íèêîëüñêèé Ñ.Ì. «Ïðèáëèæåíèå ôóíêöèé ìíîãèõ ïåðåìåíííûõ è
òåîðåìû âëîæåíèÿ». Ì., Íàóêà, 1969. ñ. 133
3. Ñòå÷êèí Ñ.Á. «Îáîáùåíèå íåêîòîðûõ íåðàâåíñòâ
Ñ.Í.Áåðíøòåéíà» //
Äîêë. ÀÍ ÑÑÑÐ. 1948. Ò.60. ¹9 ñ. 1511-1514.
4.
Êîçêî
À.È. «Àíàëîãè íåðàâåíñòâ Äæåêñîíà-Íèêîëüñêîãî äëÿ òðèãîíîìåòðè÷åñêèõ ïîëèíîìîâ
â ïðîñòðàíñòâàõ ñ íåñèììåòðè÷íîé íîðìîé» //Ìàòåì. çàìåòêè, 1997, òîì 61, ¹5, Ñ.687 – 689.