ФИЗИКА/ 5. Геофизика

D.Sc. Khristoforov B.D.1, D.Sc. Khristoforov O.B.2, Ph.D. Chertovskikh O.O.3

Institute of Geosphere Dynamics of RAS 1, Russian Federation;
Troitsk Institute for Innovation and Fusion Research 2, Russian Federation;
Moscow State Institute of International Relations 3, Russian Federation

Investigation of pulse action, simulated by laser irradiation on operation of aircraft engines

 

INTRODUCTION. At present time powerful pulsed lasers have found application in a number of state-of-the-art industrial technologies, methods of modeling and research of the processes of interaction of radiation with matter. The development of the most powerful pulsed laser systems is aimed at studying extreme states of matter, as well as their application in military sphere and solving the problems of Inertial confinement fusion.

High volume chip manufacturing based on the use of UV excimer lasers pumped by electric discharge is one of the most widely applied nanotechnologies nowadays. The most powerful and high-energy lasers of this type are pumped by a volume discharge in combination with an auxiliary surface discharge [1-8]. The next generation lithography technology supporting extreme ultraviolet (EUV) volume chip production at the 7 and 5 nm nodes uses 13.5 nm EUV light generated by tin-plasma produced by a high-power high- repetition rate CO2- laser system. At the same time, for the inspection of nanostructures there can be used high-brightness EUV- light sources based on both laser-produced and discharge-produced plasma [9-15].

Laser eye-microsurgery, laser lithotripsy and laser treatment of benign prostatic hyperplasia are regarded as the most socially significant application of pulsed lasers.

The important applications of high-power high- repetition rate lasers are laser annealing [16], including the low-temperature annealing of polycrystalline silicon for the volume production of flat panel color displays, fabrication of high-quality thin films of high-temperature superconductors by pulsed laser deposition, the laser chemistry’ synthesis and laser marking [17-19], laser drilling which is used in the aerospace industry, remote sensing of the atmosphere, terrestrial surfaces and water bodies [20-22].

With the advent of short and ultrashort laser pulses, there has been a growing interest in the applications of femtosecond and picosecond lasers for laser surgery as well as for such applications as laser ablation of metals in liquids, laser surface modification, including photovoltaic and laser impact hardening of the surface.

The results of the research [23] have proved the possibility of using high-power laser radiation to simulate a lightning strike. In this paper presented are the results of the study of the effect of thunderstorm and other impulse actions of a natural and technogenic nature on the operation of turbojet engines of aircraft. The study was carried out on the basis of the results obtained by one of the authors of the present research, B.D. Khristoforov, while simulating the above mentioned effects by pulsed laser irradiation of air intakes of aircraft [24-26]. To calculate the parameters of impulse actions in the given research there have partially been used the methods of mathematical modeling developed to describe a wide range of explosive processes of natural and technogenic character in various environments: in water, soil, at the surface of the earth, in the atmosphere, at high altitudes, at the surface of stars, in pulsed nuclear reactors, etc. [27-39]. The English version of this work assumes its use by the author of the works [40-42] as a textbook.

MATERIALS AND METHODS. For modeling, were used lasers at a wavelength of 1.315 μm with explosive pumping. In addition, a comparison was made between the action of pulsed lasers on aircraft engines with the action of electrical discharges and the action of explosives in the air. As aircrafts, used in experiments to simulate lightning and other actions on the air intake of an airplane, there were used aground MIG-23 and MIG-21 aircrafts with their turbo-jet engines being on, Fig. 1. In the experiments a laser beam or a discharge-produced plasma affected the surface of the cone at the entrance to the air intake.

The output energy of laser and electrical discharge ranged from 10 to 49 kJ. To generate a discharge-produced plasma at the entrance to the air intake, there was applied an electric explosion of a flat conductor made from a metal foil or a surface discharge, the physics and technique of which are presented in Refs [43-47]. There was used a battery of capacitors with a capacity of up to 13,000 μF, with a voltage of up to 5 kV, with an energy reserve of up to 160 kJ. For the explosions there were used charges of explosives initiated at the center with explosive heat Q = 4.8 MJ/kg, density of about 1600 kg/m3 with a mass up to 0.02 kg. During the laser irradiation or electric discharge or explosion the high-speed cameras recorded from different directions and at different frequencies an explosion cloud or an emerging plasma plume. The shadow method allowed to record the front of the shock wave.

 

Fig. 1. The scheme of the experiment: 1, 2 - the first and second aircrafts, 3- the location of the impulse action, 4- the external blowing with the help of the jet engine stream of the second aircraft.

Simulation of lightning and other actions on the operation of a turbojet engine of an aircraft flying at low altitudes and subsonic speeds were also carried out with its counterflow at speeds of up to 500 km/h from the jet of another aircraft.

THE RESULTS OF THE STUDY. In Table 1 there presented the typical results of measurements at electrical discharge and irradiation on the cone of the aircraft 10 cm from the inlet to the air intake after the energy release, where E is the total energy of plasma, Ed is the energy in the discharge taking into account the combustion of the initiator of the discharge, m1 is the mass of the electrically exploding conductor made from the metal foil, h and V1 - is the lift height and the flare volume at the barrier to the end of the energy release, T - is the brightness temperature of the plasma in IR spectral region.

Table 1. Parameters of discharge-and laser-produced plasma on the engine air inlet of aircraft.

 

Discharge-produced plasma

Laser-produced plasma

E, kJ

35

27

19

14

23

19,5

18

30

Ed, kJ

31

22,7

15

10,4

-

-

-

-

m1 , г

0,14

0,14

0,14

0,14

-

-

-

-

h, cm

21

18

14

11,5

-

-

11,5

21

V1, l

52

42

26

20

31

29

-

-

T, kK

27,5

21

22

21

-

23

-

32

Methods of simulating the action of lightning on aircraft engines allowed calibrate antisurge system and estimate the minimum required plasma energy to defeat the aircraft of the MiG- 21, 23 type.

The carried out aground research showed that the drift of laser-produced plasma or discharged- produced plasma and explosive plasma into the air intake of an aircraft can lead to the loss of gas-dynamical stability of the operation of the turbojet engine, the transition to surging and the termination of work, Fig. 2.

 

Fig. 2. The diagram characterizing the energy boundaries (vertical dashed lines) for the disruption of operation of a turbojet engine at different engine operating frequencies n%. Dark and light squares correspondently indicate the violation of the gas-dynamic stability of the engine and its absence.

In the conditions of the experiments anti-surge systems usually did not have time to restore the work of engine. As it could be seen from the dependences of Fig. 2, with an increase in n% - the engine operating frequency which determines the engine blowdown speed, the energy of the heated gas which is necessary to disrupt its gas-dynamic stability reduces. Thus, for n = 93%, the energy consumption for plasma formation, the tightening of which in the air intake leads to a violation of the gas-dynamical stability of the engine, was less than 19 kJ. Disruption in the operation of the turbojet engine, which occurred after passing through it a shock wave and a region of heated gas, was of a probabilistic nature and depended on the energy or volume of the plasma and on the engine speed. The engine failure was accompanied by the ejection of heated gas from the air intake, which was recorded by heat sensors after passing the heated gas area through compressor, and from the jet, which was recorded by the cameras.

CONCLUSION. There were studied the parameters of shock waves with the affect on the surface of the laser radiation and electric discharges with energies characteristic for lightning and below this level, and there were determined their trotyl equivalents. There was studied the influence of external blowing on the parameters of shock waves with the velocities of up to 500 km / h, simulating a storm or an airplane flight at low altitudes.

There were also defined energy levels necessary to violate the gas dynamical stability of aircraft engines under different operating conditions at low altitudes and subsonic speeds. The obtained results, in particular, suggest that the crash of IL-76 during aerial firefighting in the Irkutsk region in 2016 [48] can be associated with the violation of the gas-dynamical stability of engines and the loss of maneuverability of the aircraft in hilly terrain with the ingress of combustion products into the air intakes after the discharge of water into the mountains from the height of less than 100 m.

Referencies:

1.     Baranov V.Yu., Borisov V.M., Davidovskii A.M., Khristoforov O.B. Use of a discharge over a dielectric surface for preionization in excimer lasers. Quantum Electronics. 1981. V. 11. № 1. P. 42.

2.     Baranov V. Yu., Borisov V. M., Molchanov D. N, Novikov V. P., Khristoforov O. B. Wide-aperture electric-discharge XeCl laser with ultraviolet preionization and 20-J output energy. Quantum Electronics. 1987. V. 17. P. 978.

3.     Baranov V.Yu., Borisov V.M., Molchanov D.N., Novikov V.P., Khristoforov O.B. A wide-aperture UV-preionized XeCl laser with the emission energy of 20 J. Quantum Electronics. 1987. V. 14. P. 1542.

4.     Borisov V.M., Khristoforov O.B., Kirukhin Yu.B., et al. The kilowatt range high repetition rate excimer lasers // Progress in Biomedical Optics and Imaging. 1991. V. 1503. P. 40.

5.     Borisov V., Khristoforov O., Kirykhin Yu., et al. Prospects for high power, high repetition rate industrial excimer lasers. Proceedings of SPIE - The International Society for Optical Engineering XIII International Symposium on Gas Flow and Chemical Lasers. Editors: A. Lapucci, M. Ciofini. Florence, 2001. P. 348-352.

6.     Borisov V. M., El'tsov A. V., Khristoforov O. B. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate. Quantum Electronics. 2015. V. 45. № 8. P. 691-696.

7.     Borisov V. M., Demin A. I., Khristoforov O. B. Prototype of a high-power, high-energy industrial XeCl laser. Quantum Electronics. 2015. V. 45. № 3. P. 200-203.

8.     Borisov V.M., Demin A.I., Khristoforov O.B. et al. High-average-power excimer lasers. Proceedings of SPIE - The International Society for Optical Engineering Сер. "XII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference" 1998. P. 56-66.

9.     Schriever G., Stamm U., Gäbel K., Darscht M., Borisov V., Khristoforov O., Vinokhodov A. High power EUV sources based on gas discharge plasmas and laser produced plasmas. Microelectronic Engineering. 2002. V. 61-62. P. 83-88.

10. Borisov V.M., Vinokhodov A.Yu., Ivanov A.S., Kiryukhin Yu.B., Mironov S.V., Mishchenko V.A., Prokof'ev A.V., Khristoforov O.B. Р High-power gas-discharge EUV source. Plasma Physics Reports. 2002. V. 28. № 10. P. 877-881.

11. Borisov V.M., Demin A.I., Eltsov A.V., Ivanov A.S., Khristoforov O.B., et. Al. Xenon and tin pinch discharge sources. In book: EUV Sources for Lithography. 2006. P. 477-504.

12. Borisov V.M., Vinokhodov A.Yu., Ivanov A.S., Kiryukhin Y.B., Mishchenko V.A., ProkofEv A.V., Khristoforov O.B. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits. Quantum Electronics. 2009. V. 39. № 10. P. 967-972.

13. Борисов В.М., Борисова Г.Н., Виноходов А.Ю., Захаров С.В., Иванов А.С., Кирюхин Ю.Б., Мищенко В.А., Прокофьев А.В., Христофоров О.Б. Мощный источник света в экстремальном УФ диапазоне (13.5 нм) // Квантовая электроника. 2010. Т. 40. № 8. С. 720-726.

14.      Borisov V.M., Koshelev K.N., Prokofiev A.V., Khadzhiyskiy F.Yu., Khristoforov O.B. EUV light source with high brightness at 13.5 nm. Quantum Electronics. 2014. V. 44. № 11. P. 1077-1082.

15. Борисов В.М., Кузьменко В.А., Христофоров О.Б. Импульсно-периодический источник высокотемпературной плазмы и коротковолнового излучения для технологических применений // Инженерная физика. 2014. № 4. С. 34-43.

16. Limanov A.B., Chubarenko V.A., Borisov V.M., Vinokhodov A.Yu., Demin A.I., Khristoforov O.B., El'tsov A.V., Kiryukhin Yu.B. The study of silicon films obtained by sequential lateral solidification by means of a 3-kHz excimer laser with a sheet like beam. Russian Microelectronics. 1999. V. 28. No 1. P. 25-33.

17.  Borisov V M, Gordon E.B., Khristoforov O.B., Matyushenko V.I. Chemical HF laser initiated by an excimer XeCl laser. Quantum Electronics. 1982. V. 12. 2. P. 256-258

18.      Маклаков В., Христофоров О., Мошников А. Селективная модификация материалов неразрушающим потоком высокоэнергетичных фотонов // Наноиндустрия. 2011. № 5 (29). С. 66-70.

19.  Ershov Y.A., Maklakov V.V., Khristoforov O.B. Photochemical technology of the formation of polymer materials’ nanomarkers. Theoretical Foundations of Chemical Engineering. 2016. V. 50. No 1. P. 76-82.

20. Barenboim G., Saveka A., Avandeeva O., Borisov V., Khristoforov O., Stepanovskaya I. Development of a system for the early detection and monitoring of oil spills on water bodies with a glance to its use in the Arctic zone. Proceedings of the 36th AMOP Technical Seminar on Environmental Contamination and Response 2013. P. 565-590.

21. Avandeeva O.P., Barenboim G.M., Borisov V.M., Saveka A.Y., Khristoforov O.B., Stepanovskaya I.A. A toxicity estimation system for individual hydrocarbons in the monitoring loop of emergency oil spills on water bodies. Automation and Remote Control. V. 75. № 11. P. 2023-2033.

22.  Авандеева О.П., Баренбойм Г.М., Борисов В.М., Савека А.Ю., Степановская И.А., Христофоров О.Б. Система раннего обнаружения и мониторинга аварийных разливов нефти на водных объектах арктической зоны // Инженерная экология. 2013. № 6. С. 30-47.

23. Khristoforov B.D. Modeling gas-dynamic processes in thunderstorms by powerful electric discharges. Combustion, Explosion, and Shock Waves. 2010. V. 46. № 1. P. 11-15.

24.  Khristoforov B.D., Khristoforov O.B. Chertovskikh O.O. Study of pulsed impacts on the operation of aircraft engines. News of science and education. 2017. V. 8. № 2. P. 022-026.

25. Христофоров Б.Д., Христофоров О.Б., Чертовских О.О. Исследование импульсных воздействий на работу авиационных двигателей // Академический журнал Западной Сибири. 2017. Т. 13. № 1. С. 55-56.

26. Христофоров Б.Д., Христофоров О.Б., Чертовских О.О. Исследование импульсных воздействий, моделируемых лазерным облучением, на работу авиационных двигателей // Авиакосмическое приборостроение. 2017. № 9. С. 28-38.

27. Христофоров Б.Д. Моделирование параметров молнии и грома мощным электрическим разрядом и излучением // Академический журнал Западной Сибири. 2013. Т. 9. № 5 (48). С. 118-122.

28. Христофоров Б.Д. Исследование удара разогнанных взрывом порошков и игл // Инженерная физика. 2014. № 7. С. 47-57.

29. Belinsky I.V., Khristoforov B.D. Viscosity of NaCl under shock compression. Journal of Applied Mechanics and Technical Physics. 1968. V. 9. № 1. P. 150.

30. Христофоров Б.Д., Широкова Э.А. Параметры ударной волны при подводном взрыве шнурового заряда // Прикладная механика и техническая физика. 1962. № 5. С. 147.

31. Adushkin V.V., Khristoforov B.D. Craters of large-scale surface explosions. Combustion, Explosion, and Shock Waves. 2004. V. 40. № 6. P. 674-678.        

32. Khristoforov B.D. Parameters of radiative and gas-dynamic processes in air, near-ground, and ground explosions of charges with a mass up to 1000 tons. Combustion, Explosion, and Shock Waves. 2014. V. 50. № 1. P. 97-104.

33. Khristoforov B. Investigation of shock wave parameters at explosives blasts in the tubes with air. Universal Journal of Engineering Science. 2013. № 1 P. 28-33.        

34. Христофоров Б.Д. Исследование ргд характеристик приземных и высотных взрывов ВВ // Инженерная физика. 2017. № 7. С. 35-42.

35. Христофоров Б.Д. Моделирование взрывных процессов при вспышках у поверхности солнца // Инженерная физика. 2015. № 10. С. 57-62.

36. Solovev V.O., Khristoforov B.D. Simulation of the effect of x-rays on the cellular structure of the chamber walls of a nuclear power facility. Atomic Energy. 2008. V. 105. № 1. P. 42-49.

37. Соловьёв В.О., Христофоров Б.Д. Разработка методов моделирования действия мощного излучения на стенки камеры реактора импульсных ядерных энергетических установок // Проблемы машиностроения и автоматизации. 2008. № 3. С. 56-61.

38. Соловьёв В.О., Христофоров Б.Д. Моделирование механического воздействия импульсного рентгеновского излучения на стенки камер ядерных реакторов // Проблемы машиностроения и автоматизации. 2007. № 4. С. 72-76.

39. Solovev V.O., Khristoforov B.D. Modeling the action of x-ray radiation on the walls of explosion chambers of pulsed nuclear power plants. Combustion, Explosion, and Shock Waves. 2008. V. 44. № 5. P. 601-606.

40. Чертовских О.О.Британский университет: методы, формы и содержание учебного процесса // Человеческий капитал. 2015. № 8 (80). С. 15-20.

41. Пичкова Л.С., Чертовских О.О. Гендерный фактор в обучении межкультурной коммуникации // Человеческий капитал. 2016. № 12 (96). С. 59-62.

42. Чертовских О.О. Значение исследования историко-культурных особенностей университетов Великобритании в условиях академической мобильности студентов и преподавателей. В сборнике: Актуальные вопросы подготовки специалистов международного профиля: смена парадигм. 2014. С. 163-171.

43. Баранов В.Ю., Борисов В.М., Высикайло Ф.И., Христофоров О.Б. Исследование условий формирования однородного сильноточного скользящего разряда // Теплофизика высоких температур. 1984. Т. 22. № 4. С. 661-665.

44.  Borisov V.M., Davidovskii A.M., Khristoforov O.B. Experimental investigation of the characteristics of a planar surface discharge. Quantum Electronics. 1982. V.12. No 11. P. 1403-1407.

45.      Борисов В.М., Высикайло Ф.И., Кирюхин Ю.Б., Христофоров О.Б. // Квантовая электроника. 1983. Т. 10. № 10. С. 2110 -2112

46.      Борисов В.М., Высикайло Ф.И., Христофоров О.Б. Исследование однородного сильноточного скользящего разряда // ТВТ. 1983. Т. 27. № 9. С. 844-851.

47. Borisov V.M., Vysika'ilo F.I., Kiryukhin Y.B., Khristoforov O.B. Pulse-periodic surface discharge. Quantum Electronics. 1983. V. 13. P. 1408.

48.  "Russian IL-76 plane with 10 on board disappears while putting out forest fire in Siberia". RT com. Retrieved 25 July 2016. URL: https://www.rt.com/news/349088-firefighter-plane-lost-siberia/