Технические науки/ 5.Энергетика
1Султанова Кундыз Жолдасбаевна, 2Арипбаева Жадыра
Ергалиевна
Казахстан, г. Алматы, 1КазНПУ
им. Абая, 2№ 24 лицей
НАНОТЕХНОЛОГИИ И ИХ ПРИМЕНЕНИЕ
Современный уровень развития нанотехнологий. В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов[1, С. 51-55].
Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.
Наноэлектроника и нанофотоника
Существуют следующие основные направления наноэлектроники:
1. Кремниевая электроника.
2. Электроника на механотранзисторах.
3. Электроника на нанотрубках.
4. Молекулярная электроника.
5. Одноэлектроника.
6. Спинтроника.
7. Квантовая электроника.
8. Многозондовые системы.
9. Гибкая электроника.
Электроника на механотранзисторах. По своим размерам современные транзисторы могут быть всего в несколько раз больше молекулы. Однако даже эти компоненты намного больше, чем новое поколение наноэлементов, в которых вместо кремния будут использоваться органические соединения и углеродные нанотрубки. Нанотехнологии позволят не только уменьшить размеры микросхем, но и увеличить количество транзисторов в них, что значительно повысит производительность[2, С. 3-13].
Электроника на нанотрубках. Размеры углеродных нанотрубок сопоставимы с размерами молекул. Средний диаметр однослойной углеродной нанотрубки составляет около 1 нанометра. Если же удастся «заставить» одну нанотрубку хранить один бит информации, то память на их основе будет хранить колоссальные объемы информации, ведь современные ячейки flash-памяти, хранящие один бит информации, имеют размеры от 50 до 90 нанометров.
Одной из перспективнейших отраслей применения нанотехнологий является компьютерная техника. Несмотря на значительную миниатюризацию и оптимизацию современных устройств, имеющихся на рынке, нанотехнологии смогут совершить в этой сфере настоящую революцию. В этом случаи размеры действующих элементов микропроцессоров и устройств памяти приближаются к квантовым пределам, то есть границам мельчайших единиц материи и энергии - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что намного порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске - размерами с наручные часы - можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии всех жителей Земли.
Нанофотоника. Компании, занимающиеся нанофотоникой, разрабатывают высокоинтегрированные компоненты оптических коммуникаций с применением технологий нанооптики и нанопроизводства. Такой подход к изготовлению оптических компонентов позволяет ускорить получение их прототипов, улучшить технические характеристики, уменьшить размеры и снизить стоимость.
Наноэнергетика. Наоэнергетика включает в себя[3]:
1. Энергетические системы
2. Генерация энергии: солнечные батареи, термоэлектрические элементы, микрожидкостные генераторы, ядерные установки, термоядерные установки, батарейки и аккумуляторы.
3. Топливные элементы: водородные элементы, передача энергии (высокотемпературные сверхпроводники, формирование градиента температур)
Солнечные батареи. Солнечную батарею толщиной в бумажный лист, которую можно гнуть и сворачивать, создала японская электротехническая компания Sharp. Как сообщает сегодня токийская печать, батарея в виде пленки имеет толщину от 1 до 3 микрометров - то есть, от одной до трех тысячных миллиметра. Это меньше современных аналогов примерно в сто раз. Компания собирается начать промышленное производство новики уже в этом году. Слоями солнечных батарей планируется покрывать мобильные телефоны, автомобили и даже специальную одежду. Пленка площадью в две визитные карточки весит всего один грамм и обладает мощностью в 2,6 ватт. По словам разработчиков, этого уже достаточно, чтобы обеспечить электропитанием велосипедный фонарь.
Батарейки и аккумуляторы. Компания Toshiba разработала литиево-ионную батарею на основе наноматериалов, которая заряжается примерно в 60 раз быстрее обычной. За одну минуту её можно заправить на 80%, а полная ёмкость аккумулятора (у первого образца она была равна 600 миллиампер-часов) заполняется через несколько минут (см. рис. 2).
Рисунок 2. Нанобатарейка (3,8х62х35 мм)
Создать нанобатрейку удалось благодаря новой технологии, основанной на использовании наночастиц, находящихся в составе материала отрицательного электрода батареи. При зарядке батареи, наночастицы быстро собирают и хранят ионы лития. На рынке скоростная батарейка появилась в 2006 году.
В самом деле, чтобы нанотехнологии не
остались научной фантастикой, они должны найти свое место в экономике, включиться
в существующие экономические циклы или создать новые. Это требует активного
мониторинга и сопровождения на всех этапах от лаборатории до рынка. Это
качественно новый уровень управления, позволяющий решать
организационно-экономические проблемы невиданного уровня сложности.
Литературные источники
1. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005.С. 51-55, 78-91.
2. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003. №8. С. 3-13.
3. http:// www.nanotube.ru