UDC: 62-83:681.3

 

Ermaganbetova S.*1, Zharkymbekova M2, Toygozhinova Zh.2, Shadhin Y2

1Al-Farabi Kazakh national university, Almaty, Kazakhstan

2Almaty University of Energy and Communications, Almaty, Kazakhstan

*e-saule@mail.ru

 

Definition for stability of motion of system of TPN – AD 
by program MatLab

 

        Abstract.The article provides a block diagram of a closed-loop nonlinear system of thyristor frequency converter -an induction motor with a short-circuited rotor and the mathematical description of dynamics of system. It is given the calculation of the phase trajectories of the system in MATLAB.

Definition for stability of motion of the closed-loop nonlinear system the thyristor voltage converter– an induction motor is one of necessary problems of projection of this system. The objective stability of motion of system of TPN– a АD can be solved by Lyapunov's method or method of a harmonic linearization [1]. However the objective can be also successfully solved by method of phase trajectories by means of computer MATLAB system on the Computer. 

       Key words: induction motor, thyristor voltage converter, block diagram, nonlinear system, differential equations, stability.

 

         УДК 62-83:681.3

 

С.Д. Ермаганбетова*1, М. Б. Жаркымбекова 2, Ж.Ж. Тойгожинова 2, Ю.И. Шадхин2

1Казахский национальный университет имени аль-Фараби, г .Алматы, Казахстан

2Алматинский Университет энергетики и связи, г. Алматы, Казахстан

*e-saule@mail.ru

 

 

Определение устойчивости движения системы ТПН – АД

в программе MatLab

 

       Абстракт. Определение устойчивости движения замкнутой нелинейной системы тиристорный преобразователь напряжения – асинхронный двигатель является одной из необходимых задач проектирования данной системы. Поставленная задача устойчивости движения замкнутой системы ТПН – АД может быть решена методом Ляпунова или методом гармонической линеаризации [1]. Однако поставленная задача может быть также успешно решена методом фазовых траекторий с помощью компьютерной системы MATLAB на ЭВМ.

      Ключевые слова: асинхронный двигатель, тиристорный преобразователь напряжения, структурная схема, нелинейная система, дифференциальные уравнения, устойчивость.

 

         УДК 62-83:681.3

С.Д. Ермағанбетова*1, М. Б. Жаркымбекова 2, Ж.Ж. Тойғожинова 2, Ю.И. Шадхин2

1Әл-Фараби атындағыҚазақҰлттық Университеті, Алматы қ., Қазақстан

2 Алматы энергетика және университеті, Алматы қ., Қазақстан

*e-saule@mail.ru

 

MatLab программасының көмегімен КТТ – АҚ жүйесі қозғалысының тұрақтылығын анықтау

 

Абстракт. Статьяда қысқа тұйықталған роторлы ЖТТ – АҚ тұйықталған бейсызықты жүйенің құрылымдық сұлбасы және динамикалық жүйені математикалық сипаттау келтірілген. MATLAB бағдарламасында жүйенің фазалық траекториясына есептеулер жүргізілген.

Түйін сөздер: асинхронды қозғалтқыш, кернеуді тиристорлы түрлендіргіш, құрылымдық сұлба, бейсызықты жүйе, дифференциалдық теңдеу, орнықтылық.

 

      Introduction. Phase curve preparation in the ТПН - АД coordinates by which it is defined stability of motion of this system. Differential equations for calculating the phase curve. The experimental data
The experimental data for calculation of parameters of system of
ТPN – АD.

 

       Experimental

       The Method of phase trajectories allows to define stability of system of TPN – АD and self-oscillations of system that is especially important. The block diagram of closed-loop nonlinear system of TPN – АD in the MATLAB environment is illustrated in figure 1.

 

 

Figure 1. The block diagram of system of TPNАD with velocity feedback

 

       The block diagram of an induction motor [2] consists of the integrating componentwith coefficient of a feedback Kw and an inertialess component with coefficient Ku. The thyristor voltage converter of system is shown in Figure 1 by inertial component). The nonlinear filter with amplitude attenuation [1] is used as a velocity governor of system for improvement of quality of management processes.  Created differential equations for research of a dynamic stability of nonlinear system of  TPNАD by method of phase trajectories at Mc=0 (the static moment of loading) formed by:  

;

 

                                             ;                                             (1)

 

,

 

where is the velocity of the engine; is the output voltage of thyristor voltage convert;is the output signal of an inertial component of a velocity governor; is the transmitting coefficient of an induction motor; is the TPN transmission coefficient; is the feedback coefficient on velocity; is the electromechanical time constant of АD; is the time constant of ТPN; is the time constant of an inertial component of the nonlinear filter with amplitude attenuation; is the setting influence

To calculate the phase trajectory of the phase space of the system of equations (1) on the computer the equations (1) we can lead to the following form:

;

                                              (2)

here

Summary

      Numerical integration of differential equations (2) is carried out in MATLAB system[3]. The program of the solution of the system of equations (2) is illustrated in figure 2.

 

 

Figure 2. Program of the solution of the system of equations

In the program coefficients of system of differential equations (2) are calculated for an induction motor with a short-circuited rotor type RA132MA6. The phase curve of dynamics of closed-loop system of TPN – a BP is illustrated in figure 3.

 

Figure 3. A phase trajectory of dynamics of clpsed-loop system of TPN – a BP

       The phase trajectory tends to the origin of coordinates of the closed-loop nonlinear system of TPN – a BP, whic corresponds to stability of motion of system [4].

 

REFERENCES

 

1. Popov E. The theory of nonlinear systems of automatic control and management. - M .: Science, Ch. Ed. nat. - mat. lit., 1988.

2. Terekhov V., Osipov O. Control systems of electric drives. - M .: Publishing center "Academy", 2008.

3.  Anoufriev I., Smirnov A., Smirnov E. MATLAB 7. - SPb .: BHV - Petersburg, 2005.

4. Besekersky V. Popov E. The theory of automatic control systems. - SPb.: Publisher "Occupation", 2004.