Строительство и архитектура/ 4. Современные строительные материалы

 

 

К.т.н. Калмагамбетова А.Ш.,  Куркумбаева Р.К.

Карагандинский государственный технический университет, Казахстан

Анализ и выбор оптимальных средств подготовки поверхности металла перед окраской

 

Очистка сильно заржавленной поверхности механизированным и особенно ручным способом обычно не позволяет полностью удалить продукты коррозии и приводит к неизбежности окраски по остаточной ржавчине. Одним из путей решения этой проблемы – использование химических веществ, способных реагировать с продуктами коррозии и превращать их из вредных в нейтральные или даже полезные вещества, т.е. преобразовывать ржавчину. Такие составы называются преобразователями ржавчины.

Собственно преобразователи ржавчины, воздействуя на продукты коррозии (оксиды железа), превращают их в химически неактивные соединения – нерастворимые соли или в комплексные соединения. При этом на металлической поверхности образуется прочная пленка (первый  защитный слой), которая  в течение некоторого времени (одних суток при воздействии на слой ржавчины до 50 мкм) предохраняет поверхность от атмосферной коррозии. Из этой группы преобразователей наиболее типичным и известным является преобразователь №3, который может служить одновременно и смывкой для некоторых красок.

Наиболее целесообразно применять модификаторы ржавчины при защите крупногабаритных металлоконструкций в полевых условиях ( мосты, опоры линий электропередач, наружные поверхности трубопроводов, различные изделия механического оборудования гидросооружений, металлические поверхности судов, резервуары для хранения жидкого топлива) [1].        

Были проведены работы по антикоррозионной защите строительных металлоконструкций на промышленном объекте ЛПЦ-2 АО «Испат-Кармет». Этим работам предшествовали обследование конструкций, исследование, анализ и выбор наиболее оптимальных средств подготовки поверхности металла и его окраска.

Согласно заводским данным, подтвержденным дополнительным химическим анализом, в воздушной среде ЛПЦ-2 в наибольшем количестве присутствуют пары соляной кислоты (т.к. процесс травления происходит при помощи концентрированного раствора соляной кислоты), максимальная концентрация которых достигает 25 г/м3. Вторым агрессивным компонентом является двуокись углерода, его концентрация по цеху равномерная и незначительная 0,005 г/м3. Травление в растворах соляной кислоты сопровождается большим влаговыделением, обуславливающим формирование влажной агрессивной внутрицеховой атмосферы[2].

Согласно категории коррозии по стандарту ISO 12944 и ISO 9223, промышленная атмосфера ЛПЦ-2 относится к С 5-1 очень высокая, срок службы покрытий низкий.

Содержание железа определялось в 3-6 пробах и за результат анализа принято их среднее значение. Сравнивая процентное содержание железа в продуктах коррозии с теоретическим содержанием железа и возможно образуемых при данных условиях соединениях, установлено, что продуктами коррозии являются в пробах, взятых в ЛПЦ-2: Fe2O3; Fe3O4.

Формулы этих соединений выведены также на основании данных ренгенофазового и ИК-спектроскопического анализа.

Рентгенофазовый анализ продуктов коррозии проведен на приборе ДРОН-20. Идентифицирование рентгенограмм проведено на основе сопоставление с известными литературными данными.

Рентгенографическими данными показано, что в продуктах коррозии ЛПЦ-2 гидроксиды и оксигидроксиды являются в основном аморфными. Закисных солей, стимулирующих процесс коррозии, в составе ржавчины не обнаружено. Кристаллическая часть ее представлена акаганеитом (β-FeOOH), характерным для сред с повышенным содержанием хлоридов, и который является стабильным компонентом ржавчины, не вступающий в реакции с кислотами и комплексообразователями. Следовательно, по степени активности фазового состава эта ржавчина градации 4.

Исследования продуктов коррозии дополнены ИК-спектроскопией, анализ которых показывает хорошую корреляцию спектров между собой и с известными литературными данными. В низкочастотной части спектра отчетливо проявляются средние по интенсивности и характеристичности по частоте полосы валентных колебаний связи FeO cv= 470см-1. Далее обнаруживались в спектрах всех образцов полосы, связанные с валентными и деформационными колебаниями лепидокрокита (γ- FeOOH) cv=750 cм-1 и гетита (α- FeOOH) cv=800-900 cм-1. На основе статистического анализа было показоно, что скорость атмосферной коррозии железа прямо пропорциональна содержанию двуокиси серы в атмосфере.

В зависимости от внешних условий (присутствия воды и доступа кислорода к корродирующей поверхности) сульфат железа то кристаллизуется, то опять гидролизуется и образует сульфат ионы:

Fe + H2SO4→FeSO4 +2H+ +2e;

4 FeSO4 +6H2O + O2 → H2SO4 + 4FeOOH.

Наиболее интенсивны полосы валентных колебаний групп в спектрах таких соединений, как 2Fe2O3Fe3O4∙ H2O  и Fe2O3Fe3O4∙ H2O.

В области 2800-3200 см-1 проявляется широкая полоса, обусловленная наличием Н и ОН- в образцах, т.е. наличием воды.

В результате обследования строительных металлоконструкций ЛПЦ-2  выявлено четыре зоны по степени коррозионного износа лакокрасочных покрытий, которые оценивали по площади разрушений.

1 зона – конструкция с коррозионным износом покрытия от 80 до 100%;

2 зона  - тоже, от 50 до 80%;

3 –зона – тоже, 1- до 50%;

4 зона – тоже, менее 10%.

Большая степень коррозионного износа ЛКП в 1 зоне объясняется  расположением в этой зоне травильных и моечных ванн, являющихся основными источниками агрессивных паров. Коррозионный износ во второй зоне обусловлено резкими перепадами температуры и влажности вследствие неорганизованного воздухообмена через воротные проемы и соседние пролеты. Незначительная степень разрушения ЛКП в 4 зоне объясняется малой концентрацией  паров соляной кислоты и низкой относительной влажностью из-за расположенного в соседнем пролете склада горячих рулонов.

Поскольку наибольший практический интерес представляет 1 зона, результаты физико-химического анализа  приведены только для продуктов коррозии, образовавшихся на металлоконструкциях в этой зоне. Согласно данным результатам, в продуктах коррозии отсутствует преобладающий компонент, степень кристалличности низкая, является стабильным компонентом, не вступающий в реакции с кислотами и комплексообразователями. Модифицировать такую ржавчину нецелесообразно, ее следует удалять с помощью обработки поверхности травильными пастами.

 

 

Литература:

1.     Абсиметов В.Э., Калмагамбетова А.Ш. Антикоррозионные материалы для подготовки поверхности и окраски металлоконструкций в ремонтных условиях. – Астана: Акмолинская полиграфия, 1999. - 138 с.

2.     Абсиметов В.Э., Калмагамбетова А.Ш. Пленкоингибированный ремонтный состав «Казантикор-ПИРС» // Инновационный патент РК №24550, 2011. Бюл.№ 9.