Ìàòåìàòèêà/5. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå

 

Baimankulov A.

Kostanay State University named after A.Baitursynov,  Kazakhstan.

 

Identification of the diffusion coefficient

Problem is studied in the field of  

,                                           (1)    

 ,                                                            (2)  

                                                                                  (3)                                                             

,                                                  (4) 

where                                     

.                                        (5)

 Moisture is given on soil surface to determine the  

.                                                         (6) 

We show that the diffusion coefficient    can be determined in an iterative manner.. Let  and  be two successive approximations coefficient. Corresponding solution of problem (1) - (5) is denoted by  and .Then for the difference   we obtain the problem:

                         (7) 

.                                                     (8)

.                       (9)

Multiplying (7) by  integrating over all points of the domain  and assuming that,  , we obtain

        

Performing a transformation on the right side and in view of our assumptions, we have

                       (10)

Assuming that

   ,  

we obtain the formula from (10)

.                   (11)  

By setting   following approximation , determining the condition of monotonicity of the functional

can be expressed by

,

where

Using formula (11) we deduce that

Movement of    select by the formula

 

.

where - sufficiently small number.

function , determined from the solution of the adjoint problem

 

 ,                                                  (12)

                      ,                                   (13)

                     

 

References

1.Íåðïèí Ñ.Â., Þçåôîâè÷ Ã.È. Î ðàñ÷åòå íåñòàöèîíàðíîãî äâèæåíèÿ âëàãè â ïî÷âå// Äîêëàäû ÂÀÑÕÍÈË, ¹ 6, 1966.

2.Þçåôîâè÷ Ã.È., ßíãàðáåð Â.À. Èññëåäîâàíèå íåëèíåéíîãî óðàâíåíèÿ âëàãîïåðåíîñà. // Ë.: Êîëîñ. Ñá. òðóäîâ ïî àãðîôèçèêå, âûï. ¹ 14, 1967.

3.Áàéìàíêóëîâ À.Ò. Îïðåäåëåíèå êîýôôèöèåíòà êàïèëëÿðíîé äèôôóçèè.// Ìàòåðèàëè çà VIII ìåæäóíàðîäíà íàó÷íà ïðàêòè÷íà êîíôåðåíöèÿ «Áúäåùåòî âúïðîñè îò ñâåòà íà íàóêàòà -2012», ò.36, 17-25 äåêåìâðè, 2012, Ñîôèÿ.