Islamov
A.R.
Bashkir
State Medical University, Ufa, Russia.
INFLUENCE OF THE INCREASED LOAD ON THE INCONSISTENCY
OF ORTHOPEDIC CONSTRUCTIONS WITH THE SUPPORT ON THE DENTAL IMPLANTS
Intensive development of dentistry opens up new opportunities in the
treatment of patients by implantation [2, 13]. The number of patients with
dentures supported by implants is increasing [5]. The urgent problem of implantology is the
complications that shorten the period of implant function , prevention and treatment, which devoted a lot of work [1,
3, 11, 13]. Their frequency varies from 0.55% in the early period to 0.8% in
the late period after implantation [4, 5]. An important place in this series is
the inconsistency of orthopedic structures with the support of implants due to
stress factors of increased load [1, 12]. As the functional load affects the
implant, the bone can react to stress and increase its density and strength,
especially in the cervical part of the implant body during the first 6 months -
1 year of the load [14]. The strength of the alveolar bone can increase
depending on the functional load. In other words, the area around the implant
may be in the zone of pathological overload during the first year after
installation, because in this area the stresses are the highest. But a voltage
of less than the level of the cortical bone, can still be physiological,
allowing the bone to be remodeled, becoming dense and firm. [10]
If the bone tissue is denser,
then there is less bone loss. The maxillary arch often exhibits greater bone
loss than the mandibular. Stress is greatest at the edge of the crest compared
to other areas around the body of the implant. A very soft bone allows stress
to spread further along the implant. Therefore, weak bone can affect loss a
large area around the implant body and is often accompanied by a complete
implant failure [2, 5, 11]. Progressive bone load changes the volume and
density of the "bone-implant" contact. The bone has some time to
respond to a gradual increase in the occlusal load [9]. Thus, stresses at the
edge of the bone can cause a micro-fracture or an overload during the first
year, but a change in bone strength due to the current load and its
mineralization completely changes the stress-strain relationship and reduces
the risk of micro-fracture over the next years [1]. Concentration of stress can
also prevent the flow of blood into this area. Reducing the capacity of blood vessels can contribute to loss of bone
and make the surrounding environment more susceptible to anaerobic bacteria.
What leads to the risk of complications such as peri-implantitis. [4, 5, 6]. Occlusion
loads on the implant can create a bending force moment that increases the level
of stress acting on the bone. It is noted that these loads can cause a fracture
of the implant body. There was an increase in the loss of the alveolar bone,
when consoles were used to restore lost teeth. The length of the console also
influenced the increase in the number of unrestrained restorations, fractures
of prosthetic components and fractures of implant bodies [2, 7]. Treatment
plans should include methods to reduce stress and minimize initial and
long-term complications. One of the biomechanical methods of reducing stress is
to increase the surface area. [16] Another method is the reduction of strength.
The force can decrease by: 1) magnitude; 2) duration; 3) type; 4) direction; 5)
factors that enhance it.
The overall stress on the system can be reduced by increasing the area
to which the force is applied. The most effective method of increasing the
surface area of implant support is to increase the number of
implants. [5] Consequently, the number of intermediate parts of the prosthesis
should be reduced, and the number of implant abutments should be increased. The
location of the implants is also important in the distribution of the occlusal
load. It is desirable to form a biomechanical triangle, i.e. indirect line. The
proposal is that several elements are placed so as to create a three-sided
deviation of the abutment position from the buccal side of the straight line
(tripod effect). Increasing the length of the implant usually has very little
effect on the level of stress in the transossal region around the implant at
the edge of the bone ridge during the occlusal load. Thus, increasing the
length of the implant is not an effective method of reducing stress in the
presence of force factors. Width is more important than the length of the
implant. Macrodesign of implant can affect the surface area even more than
increasing the width. The cylindrical implant is characterized by a 30% smaller
surface area than a conventional screw implant of the same size. A screw
implant with 10 turns of thread for 10 mm has a larger surface area than that
with 5 turns. The thread depth of 0.2 mm provides a smaller surface area than
0.4 mm. Thus, design can be the easiest way to significantly increase the surface
area and reduce the overall risk for the contact area of the
implant with bone tissue [5]. Loss of the cortical bone, unstable abutments and
stress fractures of implants / prostheses due to material fatigue are more
likely to result from parafunctional conditions (bruxism) [8]. Understanding
the etiology of early loss of peri-implant bone, loss of retention by
restorations and fractures of components of implantation systems enables the
doctor to develop a treatment plan that will help reduce the impact of force
factors. The treatment plan is changing to reduce its negative impact on the
implant, bone and final restoration. Under these conditions, the solution is to
increase the area of contact "bone-implant". Installing
additional implants with adequate design is the method of choice for reducing
stress, as well as increasing the width or height of the implant to reduce the
number of intermediate parts and more efficient dissipation of stress on the
bone structure, especially on the edge of the alveolar bone.
List
of used literature:
1.
Буляков Р.Т., Гуляева О.А., Чемикосова Т.С., Тухватуллина Д.Н.,
Саляхова Г.А., Гумерова М.И., Сабитова Р.И. Опыт
применения аквакинетического метода для лечения периимплантита
//Проблемы
стоматологии. 2012. № 4.
С. 24-28.
2.
Гайнутдинов О. И., Гайнутдинов О. О.,
Кучко Я. И. - Моделирование физических процессовв в биомеханической системе
«имплантат – кость» живого организма,
Вестник Тамбовского государственного технического университета - 2013г.
№2
3.
Гуляева О.А., Аверьянов
С.В. Профилактика
воспалительных осложнений после дентальной имплантации // Пародонтология. –
2017. – № 2. – С. 84-88.
4.
Иванов А.С. Основы дентальной
имплантологии: учебное пособие/ Иванов А.С.— СПб.: СпецЛит, 2013.— 64 c.
5.
Каламкаров А.Э., Саввиди К.Г., Костин И.О.,
Основные закономерности возникновения патологических изменений в костной ткани
при ортопедическом лечении пациентов с использованием дентальных внутрикостных
имплантатов // Институт стоматологии. – 2014. - №2(63)
6.
Круглик О.А., Казеко Л.А., Киселев М.Г.
- Износ твердых тканей зубов и стоматологических материалов Медицинские новости
- 2011г. №7
7.
Марк Бер, Устранение
осложнений имплантологического лечения, “Азбука”, 2007, 353с.
8.
Параскевич В.Л. Дентальная имплантология / В.Л. Параскевич. — Минск : ООО Юни-пресс, 2002.
С. 340.
9.
Перова М.Д. К вопросу о профилактике деструкции
околоим-плантатных тканевых структур. //Новое в стоматологии. —1999,-№2
(72).-Спец. выпуск.
10. Походенько-Чудакова
И.О., Пашкевич Л.А., Шевела Т.Л. - Сравнительная оценка морфологических
изменений остеоинтеграции в динамике применения различных лечебных комплексов в
условиях эксперимента, Медицинские новости - 2011г. №10
11. Сельский Н.Е., Буляков Р.Т., Галиева Э.И.,
Гуляева О.А., Викторов С.В., Трохалин А.В., Коротик И.О. Дентальная имплантация:
учебное пособие. - Уфа: Изд-во ФГБОУ ВО БГМУ МЗ РФ, 2016. - 116 с.
12. Токаревич И.В., Коренев А.Г., Козаченко Я.А. - Бруксизм.
Современный подход к диагностике и тактика лечения проявлений в полости рта,
Современная стоматология - 2011г. №1.
13. Bulyakov R., Gulyaeva O.,
Sabitova R. Role of removal
of a biofilm in prevention and treatment peri-implantitis // Nauka i studia.
2015. Т. 10. С. 30-33.
14. Polupan P.V.
Implantation: overload. Single-stage protocol and monolithic implants. / /
Problems of dentistry. - 2014 - №2