Назарбек Толқын Сұлтанқызы
Қ.А.Ясауи атындағы Халықаралық
қазақ-түрік университеті,
Түркістан қаласы
Гайруллаева Рабиға Мырзахметқызы
Қ.А.Ясауи атындағы Халықаралық
қазақ-түрік университеті,
Кентау қаласы
Математика
оқытуындағы қолданбалы есептерді қолданудағы
танымдық қызығушылықты дамыту
Қолданбалы бағытты іске асыруда басты роль
ойнайтын – қолданбалы ғылым,
бақылау нысанындағы қызметі оқшаулауды
білдіреді, жалпы жүйеде және оқу тәртібінде белгілі бір
орынды алады. Бұл нақты есептерді шығаруда қажеттілікте
себепші болуда және сонымен оқу жүйесіндегі материалдың
ортақтығының орнын анықтайды.
Жалпы есептер жүйесінде орын анықтау, т.б. оның тұрпаттамасы
қажет немесе ,бір жағынан алып қарағанда,
мұғалімнің мәліметтер жинаудағы немесе сыныптан тыс
іс-шаралардың жұмысын жеңілдетеді; бір жағынан,
балаға қолданбалы есептерді нақты оқу материалдарын
қолдана отырып тез шешуге мүмкіндік береді.
Типология сұрақтарының үлкен
көңілді Соколов В.Н (1)
өзінің жұмыстарында бөлген.
Қолданбалы математикадағы тұрпаттама: табиғи болады, жасанды және
қосалқы.
Табиғи
тұрпаттама негізінде есеп табиғатының анықтамасы
байыпты және белгілі болады. Ережеге сәйкес, онымен тағайынды
немесе шешімнің әдісінің мәнін, негізінде жаттап-оқу
материал болып табылады, оқу материалдан тыс. Түрлендіруге
сүйене отырып, осы белгілерге және оның
әрекеттерінің ескеру болады.
Біздің зерттеулеріміз бойынша, ең қажетті тұрпаттама
тағайынды шешімнің негізіне жатады, оқу материялы болып
табылады. Сол себептен өзінің жұмысында біз оған
айрықша көңілді бөлеміз, сайлап және
тәжірибенің есебі келесі тақырыптарға: 1) натурал сан
және әрекеттерді дайындау; 2) нөл саны; 3) жұп
және тақ сандар; 4) жай сандар
Алдымен жолға қойылған бір немесе
өзге қолданбалы
есептер, оны сезіну қажет, е т. өзіне сіңіретін
анықтаманы анықтап және қисындап.
Есеп оңайлатылған
түсінушілікте — сол сұрақ, жауап үшін қажет
жетер-жетпес ақпаратты жинау. Тісініксіз сұраққа жауап
беруге болама, немесе ,белгісіз ақпарат көзіне сүйенген
мәлімет мақсаттың, сол себептен алдымен оқушыдан
нақты жауап немесе әрекет күтпестен бұрын,
мұғалім өзіне сенімді болуы керек, айтылмыш баланың
дәрежесімен сәйкес келуі керек, ол
аса қиын және аса
жеңіл болмауы керек, табиғи әрі қызықты
түсіндіру болғаны жөн.
’’Қиындық — субъективтік мүмкіндік
және субъекттің күйінен тәуелді болатын санат. Ал
демек, ол мұғаліммен реттеу біледі, ара тәуелділік
оқудан, зияткерліктен деңгейінің.
Ал міне екінші шартты мысалмен аңдатуға болады.
Ақырында, есеп табиғи талғап-талдап түсіндіру, е т. ол
үдерісті, көріністерді немесе қапта-
ақиқаттықтың нысандарын өзінде болғаны
керекке.
Айталық, түрлі пәннің
біреуінің саны берілген, оларды мынадай тәртіпте аударып
аласыңыз, бесіншісін тастап кетктін , тоғызншы, оныншы немесе
кез-келген басқа пән, тек алдында берілген пәндер
қалатын еді.
Есептің осындай талғап-талдап түсіндіруі
көптеген оқушының қызығушылығын, ал демек,
қажеттілік оның шешіміне қажеттілік тудырады. Демек,
дәл осы есепті басқаша шығаруға болады, белгілі
тарихшының Флавия Иосифтің бір шытырман оқиғасынан
әуес тарихтан бастауға болады.
Ол аз болғандай, тарихтың
қызықты жайттары өзінің
қызықтылығымен қажеттілік тудырады, оның
рұқсатының мақсатының қисыны үшін
болады, оқушының Баше де Мезирьяк сөздерін де еске
түсіреді [173] «Міне біз көретін керемет тарих, не ашырқану тиіс тіпті жас нәзіктіктерге қарамастан, ақылды тыңдау. Олар адамды маңызды
қал-жағдайларға және анда-санда күтпеген пайданы
дайындауды біледі.«
Математикалық білімдер орнықтырылады - ол пайдасыз жүк емес. Ал
қажеттілік. Алынып жатқан білімнен еш болмаса қажеттілік
болмаса, сол ертелі кеш олар керек болып қалады. Солай жалғаса
отыра, білім алушыларда келешекте бұл керек емес деген ой пайда болмайды,
және де босқа уақыт жоғалтып жатырмын деген ой
түркілемейді.
Әлбетте айтылмыш тарих тапсырма болып табылмайды,
алайда ол, біріншіден, көңілдің шоғырлануының
құрулы мәселеде оқушы ойын жинайды, екіншіден, қолданбалы
есептің қатарына жаттады. Сондай бір мысал келтіре кетсек;
Ақырында, қолданбалы есеп тек табиғи
емес, және қызықты талғап-талдап түсіндіруді
керек етеді. Тек осы жағдайда ғана біз математикаға деген қызығушылықты
арттырамыз деген үмітте боламыз.
Қолданылған әдебиеттер
тізімі:
1.
Соколов В.Н. Педагогическая эвристика. –М.: Просвещение,
1995, 329 б.
2.
Шумилин а.Т. Проблемы теории творчества.-М.: Педагогика,
1989, 160б.
3.
Гурова Л.Л. Психилогический анализ решения
задач.-Воронеж, 1976 ж., 364 б.
4.
Колягин Ю.М., Оганесян В.А. Учись решать задачи: пособие
для учащихся VII-VIII
кл.-М.: Просвещение, 1980.-96 б.
5.
Стойлова Л.П. Математика: Учеб. Пособие для студентов
сред. пед. Учеб.заведений.-М.: Академия, 1997 ж., -464 б
6.
Роках А.Г. Логика
и эвристика научно-технических решений. –Саратов, 1991, 170 б.