УДК 621 86/87

М.т.н., старший преподаватель Бегендикова Ж.А.

Каспийский государственный университет технологий и инжиниринга им. Ш. Есенова

Анализ исследования эффективности работы механизмов  гусеничных  машин

 Интерес к проблемам общей экологичности машины, и почвосбережения в частности, экономичности разрабатываемых конструкций, увеличения КПД никогда не ослабевал, а новые задачи, увеличили круг затрагиваемых вопросов.

В аспекте создания новых типов гусеничных движителей, а также модернизации старых, с целью увеличения КПД движителя следует в первую очередь обратиться к работам. В них широко рассматриваются как теоретические вопросы работы гусеничного движителя, так и практические задачи по решению проблем потери мощности в движителе, долговечности гусеничного движителя, динамики взаимодействия гусениц с направляющим и опорными катками, ведущим колесом, устойчивости обвода и пр.

Труды показывают, что в последнее время использование гусеничных тракторов в сельском хозяйстве стало больше, чем колесных.

Таким образом, гусеничные тракторы обладают меньшим показателем воздействия и удельным давлением, большей проходимостью, позволяя на одну-две недели раньше начинать полевые работы, что даёт возможность получать более высокие урожаи не только за счёт меньшего уплотнения почвы, но и за счёт повышения качества технологического процесса.

Эксперименты НАТИ показали, что при изменении давления на почву весьма значительно снижается прирост удельного сопротивления вспашке. По следу трактора Т–150 он в 4,34 раза меньше, чем по следу трактора К–150К, при этом производительность труда в 1,18–1,4 раза больше, а погектарный расход топлива снизился, соответственно, в 1,38–1,07 раза. В среднем, по всем видам работ, производительность МТА с допустимым давлением на почву возрастает в 1,27 раза, а расход топлива снижается в 1,22 раза (экономия до 4000 кг топлива в год только одной машиной).

Благодаря этому и другим, описанным ниже, преимуществам, в современном зарубежном тракторостроении также наметилась тенденция использования гусеничных тракторов в сельском хозяйстве.

Координаты центра тяжести для вновь проектируемого трактора находят графически или графоаналитически. На боковой проекции трактора выделяют контуры основных узлов и механизмов и наносят векторы их веса, приложенные к центрам тяжести. При графическом методе построением веревочных многоугольников находят вертикальную и горизонтальную равнодействующие суммы весов, точка пересечения которых определит положение центра тяжести.

Одной из насущных задач в тракторостроении всегда был вопрос повышения энергоемкости машинно-транспортного агрегата. Достигается это, в первую очередь, модернизацией двигателя путём применения новых материалов и технологий. Это приводит, с одной стороны, к снижению веса ДВС, а с другой к увеличению числа и/или массы навешенных на трактор орудий. И первый, и второй из перечисленных факторов приводит к уменьшению величины горизонтальной координаты центра тяжести (его смещению по направлению к навеске трактора). Получается некий замкнутый круг: снижение веса двигателя трактора и увеличение его мощности — увеличение числа и/или массы навешиваемых орудий — увеличение мощности двигателя и снижение его веса и т.д. Это приводит к попыткам конструкторов вынести максимально вперёд массу двигателя с целью увеличить его плечо (в качестве примера можно привести модельный ряд тракторов ВГТЗ серий ДТ-175 и ВТ-100) и/или разместить спереди трактора балластные грузы.

Альтернативным вариантом решения этой задачи может стать увеличение продольной базы трактора путем опускания ведущего колеса на грунт. Это позволить снизить массу балластных грузов, что приводит к экономии материалов, снижению общего веса конструкции, и, следовательно, снижению воздействия МТА на почву, решению ряда вопросов, связанных с эксплуатацией трактора без навешенных на него орудий. Однако данное решение также имеет ряд недостатков. В первую очередь это ведёт к увеличению момента сопротивления повороту. А самое главное, на ведущее колесо теперь будут действовать ничем не компенсируемые силы, которые могут привести к выходу из строя конечной передачи.

Для работы с минимальными потерями мощности важное значение имеет натяжение гусеницы. Недостаточное натяжение приводит к ухудшению распределения давления на почву и увеличивает ее деформацию, способствует спаданию гусеницы с опорных катков, а чрезмерное — к росту потерь на трение и ускорению износа шарниров.

При работе с большими тяговыми усилиями опрокидывающий момент от тягового сопротивления орудий приводит к перераспределению нагрузок на опорные катки: передние — разгружаются, задние — догружаются. Поэтому у большинства гусеничных тракторов, работающих с задними орудиями, центр тяжести смещен вперед от середины опорной поверхности или имеются передние грузы, которые должны быть установлены при тяжелых условиях работы, так как наибольший КПД наблюдается при равномерном распределении нагрузок по опорным каткам.

Из конструктивных параметров ходовой системы наибольшее влияние оказывают на тяговые качества длина опорной поверхности гусениц, число опорных катков и шаг гусеничной цепи. Увеличение этих параметров способствует повышению коэффициента полезного действия ходовой системы благодаря снижению сопротивления качению и буксования. Этим объясняются конструктивные особенности болотоходных тракторов и увеличенный шаг гусениц на промышленных тракторах.

При неизменной длине опорной поверхности увеличение числа опорных катков способствует росту КПД ходовой системы на легкодеформируемых почвах и грунтах. На плотных почвах и грунтах лучшие показатели имеет ходовая система с меньшим числом опорных катков большего диаметра, что объясняется уменьшением сопротивления качению и лучшим заглублением почвозацепов под опорными катками.

Лучшими тяговыми качествами обладают составные гусеницы с уплотнениями и смазкой шарниров, а также гусеницы с резинометаллическими шарнирами. Это объясняется постоянством шага гусеницы, обеспечивающим минимум потерь в зацеплении с ведущим колесом, пониженным трением в шарнирах, а также более равномерным распределением давления на почву при наличии упругих моментов в шарнире.

Литература:

1. Е.С. Наумов, В.Ф Платонов, В.М. Шарипов, Ю.С. Шетенин - Ходовая система гусеничного трактора. Москва, 2011г.

2. С.В. Мельник, В.П. Расщупкин, А.И. Громовик, Г.А. Голощапов -  Научные основы обеспечения надежности и долговечности ходовых систем гусеничных машин – Омск, 2009 г.

3. В.М. Шарипов – Конструирование и расчет тракторов – Москва, 2009 г.