Педагогические науки/1. Дистанционное образование

О.А. Гнездилова, Д.э.н., профессор Н.В. Мордовченков

филиала Сочинского государственного университета туризма и курортного дела в г. Нижний Новгород

Инновационная инфраструктура дистанционного обучения в процессе управления знаниями

 

         В условиях постиндустриальной экономики продолжается поиск методолого-теоретической парадигмы инновационной модернизации образования. На каждом этапе функционирования социума существует система институтов, выполняющих важнейшие жизненные потребности общества. При этом деятельность социальных институтов регламентирована устоявшимися традициями, правовыми нормами, менталитетом в пределах правовой инфраструктуры.

      По нашему мнению необходимо сформировать экономически обоснованную институциональную инфраструктуру дистанционного обучения (рис. 1).

Подпись: Эконометрические методы и модели в инфраструктуре дистанционного обученияПодпись: Информационный ресурс дистанционного обучения

Рис. 1 Влияние человеческого капитала на трансформацию инфраструктуры дистанционного обучения

         Разработанная авторами статьи методика оптимизации процесса дистанционного обучения по созданию эконометрических моделей может быть использована министерством образования и науки региона для повышения эффективности научно-образовательной инфраструктуры на мезоуровне с использованием компьютерных информационных технологий.[1],[2]

         Авторы статьи солидарны с тем, что без широкого применения эконометрики в доступной для студента форме от вузовской науки невозможно ожидать полезных результатов, а поэтому необходимо новое направление в инновационной инфраструктуре высшей школы (дистанционное обучение) – инфраэконометрика, позволяющая решать инфраструктурные проблемы в образовании посредством эффективных управленческих решений в комплексной системе эконометрических методов и моделей.

         Опыт и перспектива использования эконометрических методов и моделей свидетельствует, что степень эффективности выбора конкретного управленческого решения может быть оценено в виде отклика F, имеющего количественную интерпретацию (таблица 1).[3]

         Вместе с тем система факторов, влияющих на функцию полезности, в условиях создания институциональной инфраструктуры следует классифицировать:

1)       факторы Х1, Х2, …, XL, выбор которых определяется акторами, принимающими управленческие решения.

2)       факторы, характеризующие условия рисков и неопределенности, в которых осуществляется выбор и на которые акторы, принимающие решения, влиять не могут. В перечень неконтролируемых факторов может быть и лаг по времени t. Неконтролируемые факторы в зависимости от информированности о них подразделяют на три подсистемы:

а) неконтролируемые факторы А1, А2, …, АР – неслучайные фиксированные величины.

б) вероятностные неконтролируемые факторы Y1, Y2, …, Yg – случайные величины и процессы с известными законами распределений.

в) неконтролируемые факторы Z1, Z2, …, ZZ, для каждого из которых известна только генеральная совокупность, внутри которой находится закон распределения, значения неопределённых факторов неизвестны в момент принятия решения.

      В соответствии с хрестоматийной классификацией факторов критерий оптимальности следует представить в виде:

F = F (X1, X2, …, XL, A1, A2, …, AP, Y1, Y2, …, Yg, Z1, Z2, …, ZZ, t)

Значения контролируемых факторов, как правило, имеют область допустимых значений, например, ограниченностью имеющихся ресурсов. Так при фиксируемых подсистемах Ωх1, Ωх2, …, ΩхL, в которых оказывают воздействие реально существующие факторы X1, X2, …, XL. Аналогично неконтролируемые факторы могут иметь дискретный характер. Параметры A, Y, Z могут иметь идентификационные типы в скалярном или матричном виде, а также интерпретироваться из векторной алгебры или представлять тригонометрическую функцию.

      В связи с тем, что критерий оптимальности – это количественная мера степени достижения цели управления, математически цель управления выражается в стремлении к максимально возможному увеличению (или уменьшению) значения критерия F, что можно записать в виде: F max (или min).

      Средством достижения этой цели является соответствующий выбор управлений X1, X2, …, XL из подсистем Ωх1, Ωх2, …, ΩхL их допустимых значений. В целом задача качественного управления знаниями может быть сформулирована следующим образом: при заданных значениях и характеристиках фиксированных неконтролируемых факторов A1, A2, …, AP, Y1, Y2, …, Yg с учетом неопределенных факторов Z1, Z2, …, ZZ найти оптимальные значения X1опт, X2опт, …, XLопт из подсистем возможного управления процессом дистанционного обучения Ωх1, Ωх2, …, ΩхL фиксированных значений, имеющие разброс в максимум (минимум) по критерию оптимальности F.[3] Мы солидарны с таким подходом, который может быть применим и развиваться в системе формирования и функционирования экономически и социально обоснованного дистанционного обучения, при котором в качестве приоритета может быть представлена функция полезности встроенная не только при формировании и трансформации института: общество-экспресс-образование, но и при создании интеллектуальной инфраструктуры (человеческого капитала).

      Авторы статьи солидарны с мнением ученных, что инновационная инфраструктура в значительной мере коррелирует с конкурентоспособной доктриной высшего образования и науки при формировании конкурентно способного инноватора XXI века.

 


Таблица 1

 

Некоторые критерии при создании инновационной инфраструктуры дистанционного обучения в процессе управления знаниями

Критерии

Лапласа

Вальда

Сэвиджа

Гурвица

где yj – ситуация при принятии управленческого решения, n – оперативная оценка ситуации (сценария дистанционного обучения)

 - максимальная оценка

α – коэффициент оптимизма

 

Литература:

1.     Гнездилова О.А., Мордовченков Н.В. Методика оптимизации процесса дистанционного обучения: инфраструктурный аспект. В кн. Актуальные проблемы социальной коммуникации. Материалы первой международной НПК, НГТУ им. Р.Е. Алексеева. – Н. Новгород, 2010, с. 461-463

2.     Гнездилова О.А., Мордовченков Н.В. Некоторые вопросы оптимизации дистанционного обучения: вузовский компонент. Труды конференции. Новости передовой науки, том № 14, Rusnauka, г. Белгород

3.     http://ru.wikipedia.org – свободная интернет энциклопедия