Волонтир
Л.О.
Гура
О.О.
Вінницький національний аграрний
університет
БАГАТОКРИТЕРІАЛЬНА ОПТИМІЗАЦІЯ КРЕДИТНОГО ПОРТФЕЛЯ БАНКУ
Крім вимірювання та моніторингу ризику, важливим
елементом ризик-менеджменту є вивчення джерел портфельного ризику та
ефективних методів побудови портфеля із мінімальним ризиком та максимальною
дохідністю. Проте, незважаючи на те, що значні зусилля науковців та практиків
були спрямовані на удосконалення методологій вимірювання кредитного ризику,
розроблення інструментарію оптимізації портфельного кредитного ризику,
зазвичай, залишалось недостатньо висвітленим.
Проблемі оптимізації кредитного портфеля
присвячено багато наукових праць, здебільшого іноземних авторів таких як Р.
Дембо, Літерман, Х. Мозер, Д. Розен, Є. Грішина, Є. Франгулова. У своїх працях
автори здебільшого піднімають питання однокритеріальної оптимізації, коли
максимізується дохідність портфеля або мінімізується її дисперсія. Більшість
таких моделей побудована на основі портфельної теорії Марковіца.
Вперше модель двохкритеріального портфеля банку
з критеріями дохідності і ризику Г. Марковіц запропонував у 1951 р. Основна ідея
цієї моделі полягала в тому, що оптимальна інвестиційна стратегія повинна
передбачати диверсифікацію
портфеля, диверсифікацію активів,
тобто такий портфель
повинен містити невелику кількість
різних фінансових активів
із широкого набору [3].
Г. Марковіц у моделі портфелів ввів
очікувану норму прибутку і очікуваний ризик. Він показав, що зміна норми
прибутку є мірою ризику портфеля. Відповідно до моделі Г. Марковіца визначають
показники, що характеризують обсяг інвестицій і ризик. Це дає змогу порівнювати
між собою різні альтернативи вкладення капіталу.
На практиці ж часто виникає потреба
побудови компромісного кредитного портфеля, коли одночасно мінімізується ризик та
максимізується очікувана прибутковість. Така двохкритеріальна оптимізація
потребує застосування складних обчислювальних технік та алгоритмів, що робить
цю проблему цікавою як для економістів, так і для математиків.
Формування кредитно-інвестиційного портфеля
банку є непростим завданням, оскільки потребує узгодження суперечливих
критеріїв: максимізації норми прибутку та мінімізації ризику. Зазначене
актуалізує проблему коректного вибору моделі оптимізації банківського портфеля.
Основними постулатами, на підставі яких побудована класична портфельна теорія,
є такі:
● ринок складається із кінцевої
кількості активів, прибутковість яких вважають випадковими
величинами;
● інвестор може отримати оцінку
очікуваних (середніх) значень дохідності та їх попарних коваріацій і ступенів
можливості диверсифікації ризику;
● інвестор може формувати будь-які
допустимі (для певної моделі) портфелі. Прибутковість портфелів є також
випадковими величинами;
● порівняння портфелів ґрунтується
тільки на двох критеріях: середній прибутковості і ризику;
● інвестор не схильний до ризику в
тому розумінні, що із двох портфелів із однаковою прибутковістю він віддасть
перевагу портфелю із меншим ризиком.
Треба мати на увазі, що під
час формування обмежень задачі потрібно враховувати чинні нормативи
НБУ .щодо максимального розміру кредитного ризику на одного позичальника, який не повинен перевищувати 25 % та
нормативу "великих"
кредитів, який не
повинен перевищувати 8-кратного
розміру капіталу банку.
На практиці
виникає проблема
знаходження таких методів оптимізації, які б дали змогу розв'язати
задачу формування портфеля в різних постановках. Одним з таких методів є метод
еволюційного програмування, а саме генетичний алгоритм, який використовують для
пошуку глобального екстремуму
функції багатьох змінних.
Генетичний алгоритм – це метод оптимізації, який заснований на
концепціях природного відбору та генетики. У цьому підході змінні, що
характеризують розв'язок, представлені у вигляді генів у хромосомі. Генетичний
алгоритм, оперуючи скінченною кількістю розв'язків (популяцією), генерує нові
розв'язки у вигляді різних комбінацій частин розв'язків цієї популяції [4]. З
цією метою використовують такі
оператори, як відбір, рекомбінацію (кросинговер) та мутацію. Нові розв'язки
розміщуються у популяції відповідно до їхніх положень на поверхні досліджуваної
функції.
Література
1. Кишакевич Б.Ю. Багатокритеріальна оптимізація кредитного портфеля банку /
Б.Ю. Кишакевич // Науковий вісник НЛТУ України. – 2009. – Вип. 19.12
2.
Методичні рекомендації щодо організації та функціонування систем ризик-менеджменту в банках
України. Постанова Правління Національного банку України 02.08.2004 № 361.
[Електронний ресурс]. – Доступний з
http://www.bank.gov.ua/Bank_supervision/Risks/361.pdf
3.
Франгулова Е.В. Оптимизация
портфеля ценных бумаг "Математика. Компьютер. Образование".
Cб. трудов XV международной конференции / под общ. ред. Г.Ю. Ризниченко Ижевск:
Научно-издательский центр "Регулярная и хаотическая динамика", 2008.
Том 1, 302 стр. Стр. 261-266. [Електронний ресурс]. – Доступний з
http://www.mce. awse.ru/archive/doc21911 /doc.pdf