Источники и пути образования оксида азота в организме

 

Г.Т.Куандыкова., Л.О Укибаева, Р.Т.Куандыкова

Таразский государственный  университет имени М.Х.Дулати

 

Современные представления о регуляции клеточных процессов позволяют особо выделить некоторые химические соединения, обладающие полифункциональным физиологическим действием. К числу таких соединений с полным основанием можно отнести оксид азота. Данный свободный радикал способен оказывать как активирующее, так и ингибирующее действие на различные метаболические процессы, протекающие в организме млекопитающих и человека. Несмотря на многочисленные исследования, значение оксида азота в системной регуляции гомеостаза клеток и тканей не вполне понятно.

Оксид азота (NO) - газ, хорошо известный химикам и физикам, в последнее время привлек пристальное внимание биологов и медиков. Интенсивное изучение биологического влияния NO началось с 80-х годов, когда Р. Фуршготт и Дж. Завадски показали, что расширение кровеносных сосудов под влиянием ацетилхолина происходит только при наличии эндотелия - эпителиоподобных клеток, выстилающих внутреннюю поверхность всех сосудов. Вещество, выделяющееся эндотелиальными клетками в ответ не только на ацетилхолин, но и на многие другие внешние воздействия, приводящие к расширению сосудов, получило название «сосудорасширяющий эндотелиальный фактор». Несколько позже было доказано, что это вещество является газом NO и в клетках имеются особые ферментные системы, способные его синтезировать.

По своей химической структуре оксид азота относится к нейтральным двухатомным молекулам. Благодаря наличию неспаренного электрона на внешней р-орбитали молекула NO обладает высокой реакционной способностью и свойствами свободного радикала.

В организме человека и млекопитающих оксид азота главным образом образуется в результате окисления гуанидиновой группы аминокислоты L-аргинина с одновременным синтезом другой аминокислоты цитруллина под влиянием фермента NO-синтазы. Фермент был назван синтазой, а не синтетазой, поскольку для его работы не требуется энергия АТФ.

 

Рис. 1. Схема синтеза окиси азота из L-аргинина

 

Кроме L-аргинина NOS может использовать в качестве субстратов гомоаргинин, аргиниласпарагин, метиловый эфир аргинина, гуанидинотиолы. При недостатке субстрата в клетках или Н4Б фермент начинает восстанавливать кислород до супероксид радикала и перекиси водорода. Такие условия могут быть следствием как нарушения транспорта аминокислоты (в некоторых тканях она не синтезируется), так и недостатка в пище, поскольку синтез L-аргинина при этом в организме не увеличивается.

В живой ткани SH-содержащие белки, пептиды и аминокислоты образуют такие парамагнитные аддукты общего состава Fe(NO)2(SR)2, спектры ЭПР которых являются ассиметричными вариацией g-фактора от 2.01 до 2.05. однако из-за большого разнообразия естественных акцепторов NO и вариабельности их содержания, количественное определение этого радикала таким образом вряд ли возможно. В то же время гемопротеиды (гемоглобин, миоглобин, цитохром а3 и др.) образуют нитрозильные парамагнитные комплексы, имеющие широкий спектр ЭПР.

С разрешенной сверхтонкой структурой (СТС) в области значений g-фактора меньше 2. Анализ полученных спектров ЭПР свидетельствует о том, что структура указанных комплексов имеет ромбическую симметрию.

 

Таблица 1. прямые методы регистрации оксида азота.

Инструментальный метод

Соединение-индикатор/реакция-индикатор

Чувствительность

ЭПР

Fe-(NO)2-(SR)2

 

ЭПР

Hb-Fe(II)-NO

5 мкМ

ЭПР

(ДТК)2-Fe(II)-NO

1 мкМ

ЭПР, L-линия

Фьюзинит-NO

1 мкМ

Хемилюминесценция

NO + O3 = hн + NOx

20 нМ

Амперовольтметрия

NO + e = NOx

10 нМ

 

Более перспективным представляется метод с использованием карбоксигемоглобина в качестве экзогенной спиновой ловушки оксида азота. На состояние Hb-Fe(II)-CO не оказывает влияния степень оксигенации среды, а поскольку прочность связывания NO с гемоглобином на три порядка больше, чем прочность связывания СО, то можно ожидать практически количественного образования нитрозил-гемоглобина. Следует, однако, отметить, что гемоглобин или его производные имеют ряд особенностей, ограничивающих применение их в качестве естественной или экзогенной спиновой ловушки. Проникновение крупных молекул в клетки к месту синтеза оксида азота крайне затруднено, поэтому включаться в комплекс и становиться ЭПР-видимой будет лишь часть оксида азота, не метаболизированная в период диффузии. Кроме того, недостаточно определены пути и скорости дальнейших превращений Hb-Fe(II)-NO в живой клетке.

При прямом определении NO методом ЭПР-спектрометрии перспективным представляется использование в качестве спиновой ловушки производных дитиокарбаминовой кислоты (ДТК). В организме они образуют ЭПР-видимые комплексы состава (ДТК)2-Fe-NO, включающие в себя «свободное» железо. Эти комплексообразователи позволяют изучать образование оксида азота в тканях животных, в гомогенах, в культуре клеток и биологических жидкостях. Важно, что при оптимальных нетоксичных концентрациях ДТК их высокая скорость взаимодействия с NO существенно снижает вероятность реакции оксида азота с другими биомолекулами, в том числе с радикалами, и тем самым ограничивает влияние этих реакций на результаты ЭПР-спектрометрии.

Предложен оригинальный метод ЭПР-дозиметрии NO, в котором применена спиновая макроловушка - фьюзиниты. Это частицы размером 10 мкм, выделяемые из угля. Они обладают способность поглощать оксид азота с изменением характеристик собственного ЭПР-спектра. Не подвергаясь метаболизму, они не оказывают токсического действия на клетки, и после поглощения путем фагоцитоза могут быть использованы в качестве аналитического средства, специфического к оксиду азота.

Наиболее чувствительным среди методов определения NO в организме или в клеточных системах является электрохимический метод. Он основан на каталитическом окислении оксида азота полимерным металлопорфирином (полупроводником n-типа), которое протекает при 630 мВ. Диаметр электрода может достигать 0,2 мкм, что позволяет измерять внутриклеточное производство оксида азота. Поскольку время ответа электрода составляет около 10 мс, часть радикалов, вступающая в очень быстрые реакции (например, с супероксид-радикалом), не может быть зарегистрирована. С помощью этого методы были проведены измерения содержания оксида азота в крови человека.

Хемилюминесцентный метод основан на регистрации фотонов, излучаемых в реакции NO с озоном. Несмотря на высокую чувствительность, применение его к биологическим объектам затрудняется сложным этапом доставки радикала в анаэробную газовую фазу. Кроме того, на выход люминесценции оказывают влияние аммиак, олефины, окислы серы и другие продукты, выделяющиеся в результате биологической активности организма и часто содержащиеся в стенках аппаратуры.

Среди непрямых методов определения NO (таблица 3) наиболее распространенным методом оценки его синтеза является реакция на нитрит-анион с использованием реагента Грисса (раствор сульфаниламида и N-(1-нафтил) -этилендиамида в 2,5%-ной ортофосфорной кислоте), которая дает окрашенный дазопродукт с максимумом поглощения при 548 нм. Обычно отношение содержания NO-2/NO-3 у млекопитающих составляет 1 : 10. и хотя содержание нитрит-аниона менее подвержено влиянию состава питания, при необходимости более полного определения продукции оксида азота измеряют и содержание нитрат-аниона. Для этого NO-3, выделяющийся в культурную среду или биологические жидкости, восстанавливают металлическим кадмием, импрегнированным медью, или ферментативно, нитратредуктазой.

Таблица 2. косвенные методы определения оксида азота [1].

Соединение-индикатор

Принцип определения

Метод регистрации, чувствительность

Метгемоглобин

Hb-Fe(II)-O2 + NO = =Hb-Fe(III) + NO-2

Фотометрия, 2 нм

Иминонитроксид (ИН)

Нитронил нитроксид+NO = =ИН

ЭПР

Нитрит-анион

NO-2 + реагент Грисса = диазопродукт

Фотометрия, 1 мкм

Нитрит-анион

ФТИО* + NO = NO-2

То же

Нитрат-анион

NO-3 + Cd = NO-2 NO-3 + нитратредуктаза = =NO-2

То же

Нитрит-анион

NO-2 + S2O-4 = NO+Hb-Fe(II) = Hb-Fe(II)-NO

ЭПР, 1 мкм

Цитруллин

3H-L-аргинин + NOc = 3H-L-цитруллин

ВРЖХ, радиометрия; 0,1 мкм

цГМФ

NO + 3Н-ГМФ + ГЦ = =3Н-цГМФ

Хроматграфия, радиометрия

бис-Формазан (БФ)

ТНС* + NOc + НАДФ.Н = =БФ

Гистохимия

НАДФ.Н

НАДФ.Н + L-аргинин + NOc = НАДФ.Н

Флуорометрия

* ФТИО - 2-(4-карбокифенил)-4,4,5,5-тетраметилимидазолин-3-оксид-1-оксил;

ТНС - тетразолий нитросиний;

ГЦ - гуанилатциклаза.

 

Высокую чувствительность имеет метод, основанный на фотометрии метгемоглобина, образующегося в результате окисления оксигемоглобина NO. Применения двухволновой спектрофотомерии дает возможность определять до 2 нМ оксида азота. В качестве субстратов также могут быть использованы дезокси- и карбоксигемоглобин. Серьезным недостатком, ограничивающим применение этих методик, является необходимость очистки исследуемых объектов от эндогенного гемоглобина, а также соединений, способных его окислять.

Как известно, оксид азота образуется из L-аргинина в эквимолярном отношении с L-цитруллином. На этом основан радиометрический метод определения NO по появлению L-цитруллина, меченного радиоактивной меткой, происходящей из L-аргинина. В определенных условиях для оценки синтеза цитруллина может быть полезной колориметрическая реакция на карбаминогруппу. Другой необходимый компонент синтеза NO - НАДФ.Н. разница в скорости его окисления в присутствии и в отсутствии ингибитора NO-синтазы может служить показателем синтеза NO. Подобный метод применяется в гистохимии, где регистрируется НАДФ.Н-зависимая диафоразная активность NO-синтазы в присутствии и в отсутствии ее ингибиторов.

В качестве показателя синтеза NO в клеточных экстрактах также используется универсальная способность этого радикала увеличивать активность гуанилатциклазы в 10-50 раз. Ряд методов основан на измерениях физиологических реакций, инициируемых NO, таких как релаксация сосудов, ингибирование адгезии тромбоцитов и др.

Некоторые производные NO также проявляют NO-подобную физиологическую активность, поэтому помимо биотестов были предложены инструментальные методы их определения (хемилюминесценция с предварительным фотолизом образцов).

Участие нитропроизводных (производных нитритов и нитратов) во многих патологических процессах, в том числе и опухолевом росте, было известно давно. Первоначально разрозненные и часто необъяснимые данные о связи противомикробного и противоопухолевого действия макрофагов и нитропроизводных прояснились после открытия синтеза NO в эндотелиальных клетках. Действие макрофагов на чужеродные агента также стали связывать с NO, и многочисленные эксперименты подтвердили, что макрофаги способны синтезировать NO-синтазу и выделять большое количество газа. Уже отмечалось, что NO-синтаза макрофагов является индуцибельным ферментом. В нормальных условиях клетки не содержат этот фермент и не продуцируют NO. Под влиянием липополисахаридов микробного происхождения или цитокинов - высокоактивных межклеточных посредников, выделяющихся, в частности, лимфоцитами при их контакте с чужеродными агентами, в макрофагах начинается синтез индуцибельной изоформы NO-синтазы, образующей большой объем NO, оказывающего, в свою очередь, цитостатическое и цитолитическое действие на бактериальные и чужеродные (в том числе и раковые) клетки.

Нейтрофилы также способны экспрессировать индуцибельную форму NO-синтазы и синтезировать NO, однако данные о цитотоксическом действии этих клеток, связанном с NO, неизвестны.

Известно, что нейтрофилы и макрофаги способны активно образовывать свободные радикалы кислорода, и, возможно, образование пероксинитрита в реакции NO со свободными радикалами может усиливать антимикробный эффект этих клеток.

Роль оксида азота в развитии патологических состояний

Токсический эффект NO проявляется прежде всего в ингибировании митохондриальных ферментов, что приводит к снижению выработки АТФ, а также ферментов, участвующих в репликации ДНК. Кроме того, NO и пероксинитрит могут непосредственно повреждать ДНК, это приводит к активации защитных механизмов, в частности стимуляции фермента поли(АДФ-рибоза)синтетазы, что еще больше снижает уровень АТФ и может приводить к клеточной гибели. Повреждение ДНК под влиянием NO является одной из причин развития апоптоза, особого вида клеточной смерти, регулирующейся геномом клетки.

Следует отметить еще одно интересное наблюдение, связанное уже с нейронами, содержащими NO-синтазу, и не получившее пока полного объяснения. Еще в 60-х годах Е. Томас и Э. Пирс использовали новый гистохимический метод выявления активности фермента НАДФН-диафоразы (фермент, способный восстанавливать окисленную форму НАДФ) для анализа нервной системы и показали, что в разных отделах головного мозга имеются единичные нейроны с интенсивной положительной реакцией. Эти нейроны, которые получили название «одиночные активные клетки», остаются неповрежденными при разнообразной патологии нервной системы, в то время как большинство других клеток погибает. Относительно недавно выяснилось, что НАДВН-диафоразная активность свойственна NO-синтазе, и, таким образом, была установлена устойчивость нейронов, содержащих NO-синтазу, к разнообразным патологическим воздействиям. Механизмы такого необычного и имеющего большое биологическое значение свойства клеток окончательно не выяснены.

Остается не выясненным и вопрос о том, почему большие дозы синтезированного газа не оказывают токсического воздействия на клетки, в которых они образуются. Одним из возможных объяснений такого парадокса может быть то, что в нейронах, содержащих NO-синтазу, определяется высокая активность фермента супероксиддисмутазы, катализирующей распад токсических радикалов и защищающей клетку от губительного действия.

Результаты последних исследований позволили предположить, что активация NO-синтазы может выполнять не только положительную роль, но и оказывать повреждающее действие на клетки. Это связано с разнонаправленным действием механизмов, опосредующих эффекты NO, в результате чего ответ клетки на один и тот же стимул может быть существенно разным.

Примерами токсического действия NO являются основные нейродегенеративные заболевания ЦНС, такие как ишемический инсульт, эпилепсия и другие судорожные расстройства, болезни Паркинсона и Альцгеймера, боковой ангиотрофический склероз и т.д. В основе развития этих расстройств лежит избыточная продукция оксида азота в результате гиперактивации глутаматных рецепторов NMDA-подтипа, ведущей к повышению содержания внутриклеточного кальция и активации NO-синтазы.

Также выявлено участие оксида азота в развитии инсулинозависимого диабета, при этом непосредственной мишенью действия NO и других свободных радикалов является ДНК в-клеток островков Лангерганса.

Избыточная продукция NO индуцибельной формой NO-синтазы - важное звено в патогенезе острой недостаточности кровообращения при тепловом, кардиогенном, септическом и других видах шока.

В то же время, действие ряда факторов (липопротеины низкой плотности, высокие концентрации глюкозы и ишемия) может вызывать снижение продукции NO как за счет ингибирования NO-синтаз, так и за счет снижения их экспрессии. При этом низкий уровень оксида азота приводит к повышению тонуса сосудов, свертываемости крови и снижению иммунитета, тем самым способствуя развитию гипертензии, атеросклероза, тромбозов, ишемической болезни сердца, инфекционных заболеваний и опухолевого роста.

Таким образом, возникает необходимость в модулирующем воздействии на системы генерации NO c тем, чтобы поддержать или усилить защитное и физиологическое действие NO и, в то же время, устранить или ограничить его повреждающие эффекты. По последним данным, эффекты оксида азота зависят не только от концентрации, но также от места его продукции, диффузии в клетках и тканях, образования NO-содержащих соединения, взаимодействия с реактивными формами кислорода (в особенности с супероксид-анион радикалом) и, возможно, от других факторов.

Таким образом, для понимания процессов, лежащих в основе перехода защитных эффектов этого агента в повреждающие, а также для выработки новых стратегий лечения необходимо установить роль этих факторов в проявлении биологической активности NO.

Таким образом, образование NO при ферментативном окислении L-аргинина является уникальным биохимическим феноменом. Эксперименты на животных показали его чрезвычайно важную роль в регуляции сосудистого тонуса, активности тромбоцитов и лейкоцитов, нейропередаче и нейромодуляции, в обеспечении толерантности организма к патогенам. Некоторые из этих функций NO начинают успешно использоваться в терапии ряда заболеваний легких, сосудов, мозга. Применение уже известных фармакологических средств и разработка новых для воздействия на физиологические и патофизиологические процессы, опосредуемые оксидом азота, несомненно, приведет к значительному прогрессу в лечении таких распространенных заболеваний, как атеросклероз, гипертония, диабет и др. Кроме того, следует учитывать биологические явления, связанные с NO, при изучении побочных эффектов традиционных терапевтических препаратов, а также вновь разрабатываемых средств для применения в иных областях медицины.

Открытие высокоактивного межклеточного посредника - NO позволило прояснить многие неясные вопросы жизни клеточного сообщества в организме человека и животных. В 1992 году NO в знак большого интереса к ней исследователей был назван молекулой года. В 1998 году Р. Фуршготт, Л. Игнарро и Ф. Мурад за работы по выяснению механизмов, связанных с участием NO, получили высшую оценку мировой науки - Нобелевскую премию. Однако, как это всегда бывает на пути познания, новое порождает еще больше вопросов. По-видимому, NO еще долго будет привлекать внимание исследователей, и можно надеяться, что будут получены новые интересные и значимые результаты.

 

Список используемой литературы

оксид азот синтаза фермент

1. И.П. Серая, Я.Р. Нарциссов «Современные представления о биологической роли оксида азота». Межрегиональный институт цитохимии, Москва, 2002г.

2. О.Ю. Колесниченко, Л.М. Филатова, З.А. Кривицина, Ю.И. Воронков «Эндотелиальная дисфункция и метаболические эффекты оксида азота у человека», 2003г.

3.Н.А. Виноградов «Антимикробные свойства окиси азота и регуляция ее биосинтеза в макроорганизме». Центральный НИИ эпидемиологии, Москва.

4. Брюне Б., Сандау К., Кнетен А. // Биохимия. - 1988.- Т. 63, №7. - С. 966-975.

5. Малкоч А.В., Майданник В.Г., Курбанова Э.Г. «физиологическая роль

оксида азота в организме (Часть 1). <http://www.dialvsis.ru/magazin/1_2_2000/no1.htm>

6. Реутов В.П., Сорокина Е.Г., Охотин В.Е., Косицын Н.С. «Циклические превращения оксида азота в организме млекопитающих». М.: Наука, 1998. С. 156.

7. Малышев И.Ю., Манухина Е.Б. //Биохимия. 1998. Т.63. С.870.

8. Албертс А., Брей Д., Льюис Р. и др. «Молекулярная биология клетки: в 3 т.:     

      Пер. с англ. 2-е изд. М.: Мир, 1994.